Главная - Сад и огород
Чем объяснить сходство между меркурием и луной. Планета, похожая на луну. Проблема векового движения перигелия Меркурия

Меркурий – самая маленькая и самая близкая к Солнцу планета Солнечной системы. Древние римляне дали ему имя в честь бога торговли Меркурия, посланника других богов, носившего крылатые сандалии, за то, что планета быстрее других движется по небу.

Краткая характеристика

Из-за малых размеров и близости к Солнцу Меркурий неудобен для земных наблюдений, поэтому долгое время о нем было известно очень мало. Важный шаг в его изучении был сделан благодаря космическим аппаратам «Маринер-10» и «Мессенджер», с помощью которых были получены качественные снимки и подробная карта поверхности.

Меркурий относится к планетам земной группы и находится на среднем расстоянии около 58 млн. км от Солнца. При этом максимальное расстояние (в афелии) 70 млн. км, а минимальное (в перигелии) – 46 млн. км. Его радиус лишь немного больше, чем у Луны, – 2 439 км, а плотность почти такая же, как у Земли, – 5,42 г/см³. Высокая плотность означает, что в его состав входит значительная доля металлов. Масса планеты составляет 3,3·10 23 кг, и около 80% от нее составляет ядро. Ускорение свободного падения в 2,6 раз меньше земного – 3,7 м/с². Стоит заметить, что форма Меркурия идеально шарообразная – он обладает нулевым полярным сжатием, то есть его экваториальный и полярный радиусы равны. Спутников у Меркурия нет.

Планета обращается вокруг Солнца за 88 суток, а период вращения вокруг своей оси относительно звезд (звездные сутки) составляет две трети от периода обращения – 58 дней. Это означает, что одни сутки на Меркурии длятся два его года, то есть 176 земных дней. Соизмеримость периодов, по-видимому, объясняется приливным воздействием Солнца, которое тормозило вращение Меркурия, изначально более быстрое, пока их значения не сравнялись.

Меркурий обладает самой вытянутой орбитой (ее эксцентриситет равен 0,205). Она значительно наклонена к плоскости земной орбиты (плоскости эклиптики) – угол между ними составляет 7 градусов. Скорость движения планеты по орбите составляет 48 км/с.

Температура на Меркурии определялась по его инфракрасному излучению. Она изменяется в обширном диапазоне от 100 К (-173 °C) на ночной стороне и полюсах до 700 К (430 °C) в полдень на экваторе. При этом суточные колебания температуры быстро уменьшаются с продвижением вглубь коры, то есть тепловая инерция грунта велика. Отсюда был сделан вывод, что грунт на поверхности Меркурия представляет собой, так называемый реголит – сильно раздробленную породу с низкой плотностью. Из реголита также состоят поверхностные слои Луны, Марса и его спутников – Фобоса и Деймоса.

Образование планеты

Наиболее вероятным описанием происхождения Меркурия считается небулярная гипотеза, согласно которой планета в прошлом была спутником Венеры, а затем по какой-то причине вышла из-под воздействия ее гравитационного поля. По другой версии Меркурий сформировался одновременно со всеми объектами Солнечной системы во внутренней части протопланетного диска, откуда легкие элементы уже были отнесены солнечным ветром во внешние области.

По одной из версий происхождения очень тяжелого внутреннего ядра Меркурия – теории гигантского столкновения – масса планеты первоначально была в 2,25 раз больше нынешней. Однако после столкновения с небольшой протопланетой или похожим на планету объектом большая часть коры и верхнего слоя мантии рассеялась в космосе, а ядро стало составлять значительную часть от массы планеты. Такая же гипотеза используется и для объяснения происхождения Луны.

После завершения основного этапа формирования 4,6 млрд. лет назад Меркурий долгое время интенсивно обстреливался кометами и астероидами, потому его поверхность испещрена множеством кратеров. Бурная вулканическая активность на заре истории Меркурия привела к образованию лавовых равнин и «морей» внутри кратеров. По мере того, как планета постепенно остывала и сжималась, рождались другие детали рельефа: хребты, горы, холмы и уступы.

Внутреннее строение

Структура Меркурия в целом мало отличается от остальных планет земной группы: в центре находится массивное металлическое ядро радиусом около 1800 км, окруженное слоем мантии в 500 – 600 км, которая, в свою очередь, покрыта корой толщиной 100 – 300 км.

Ранее считалось, что ядро Меркурия твердое и составляет около 60% от всей его массы. Предполагали, что у такой маленькой планеты ядро может быть только твердым. Но наличие собственного магнитного поля у планеты, хоть и слабого, – веский аргумент в пользу версии об ее жидком ядре. Движение вещества внутри ядра вызывает эффект динамо, а также сильная вытянутость орбиты вызывает приливный эффект, поддерживающий ядро в жидком состоянии. Сейчас достоверно известно, что ядро Меркурия состоит из жидких железа и никеля и составляет три четверти от массы планеты.

Поверхность Меркурия практически ничем не отличается от лунной. Самое заметное сходство – это бесчисленное множество кратеров, крупных и мелких. Как и на Луне, от молодых кратеров расходятся в разные стороны светлые лучи. Однако на Меркурии нет таких обширных морей, которые к тому же были бы относительно ровными и свободными от кратеров. Еще одно заметное различие в ландшафтах – это многочисленные уступы длиной в сотни километров, образовавшиеся при сжатии Меркурия.

Кратеры располагаются на поверхности планеты неравномерно. Ученые предполагают, что районы, более густо заполненные кратерами – более старые, а более ровные – молодые. Также наличие крупных кратеров говорит о том, что на Меркурии уже, по крайней мере, 3-4 млрд. лет не было сдвигов коры и эрозии поверхности. Последнее является доказательством того, что на планете никогда не существовало достаточно плотной атмосферы.

Самый крупный кратер Меркурия имеет размер около 1500 километров и 2 километров в высоту. Внутри него находится огромная лавовая равнина – равнина Жары. Этот объект является самой заметной деталью на поверхности планеты. Тело, столкнувшееся с планетой и породившее такое масштабное образование, должно было быть не менее 100 км длиной.

Снимки зондов показали, что поверхность Меркурия однородна и рельефы полушарий не отличаются друг от друга. В этом состоит еще одно отличие планеты от Луны, а также от Марса. Состав поверхности заметно отличается от лунного – в ней мало тех элементов, которые характерны для Луны – алюминия и кальция, – но довольно много серы.

Атмосфера и магнитное поле

Атмосфера на Меркурии практически отсутствует – она очень сильно разрежена. Ее средняя плотность равна такой же плотности на Земле на высоте 700 км. Точный состав ее не определен. Благодаря спектроскопическим исследованиям известно, что в атмосфере содержится много гелия и натрия, а также кислород, аргон, калий и водород. Атомы элементов принесены из космического пространства солнечным ветром либо подняты им с поверхности. Одним из источников гелия и аргона являются радиоактивные распады в коре планеты. Присутствие паров воды объясняется образованием воды из водорода и кислорода, содержащихся в атмосфере, ударами комет о поверхность, сублимацией льда, предположительно находящегося в кратерах на полюсах.

Меркурий имеет слабое магнитное поле, напряженность которого на экваторе в 100 раз меньше, чем на Земле. Однако такой напряженности хватает, чтобы создать у планеты мощную магнитосферу. Ось поля почти совпадает с осью вращения, возраст оценивается примерно в 3,8 млрд. лет. Взаимодействие поля с обволакивающим его солнечным ветром вызывает вихри, происходящие в 10 раз чаще, чем в магнитном поле Земли.

Наблюдение

Как уже говорилось, наблюдать Меркурий с Земли довольно трудно. Он никогда не удаляется от Солнца больше, чем на 28 градусов и потому практически незаметен. Видимость Меркурия зависит от географической широты. Легче всего его наблюдать на экваторе и близких к нему широтах, поскольку здесь сумерки длятся меньше всего. На более высоких широтах Меркурий увидеть гораздо сложнее – он находится очень низко над горизонтом. Здесь наилучшие условия для наблюдения наступают во время наибольшего удаления Меркурия от Солнца или на наибольшей высоте над горизонтом во время восхода или захода Солнца. Также Меркурий удобно наблюдать во время равноденствий, когда продолжительность сумерек минимальна.

Меркурий довольно просто разглядеть в бинокль сразу после захода Солнца. Фазы Меркурия хорошо видны в телескоп от 80 мм в диаметре. Однако детали поверхности, естественно, можно рассмотреть только в гораздо более крупные телескопы, и даже с такими инструментами это будет сложной задачей.

Меркурий имеет фазы, похожие на фазы Луны. На минимальном расстоянии от Земли он виден как тонкий серп. В полной фазе он находится слишком близко к Солнцу, и увидеть его невозможно.

При запуске зонда «Маринер-10» к Меркурию (1974 г.) был использован гравитационный маневр. Прямой перелет аппарата к планете требовал колоссальных затрат энергии и был практически невозможен. Эту трудность обошли с помощью коррекции орбиты: сначала аппарат прошел мимо Венеры, и условия пролета мимо нее были подобраны так, что ее гравитационное поле изменило его траекторию ровно настолько, что зонд долетел до Меркурия без дополнительных трат энергии.

Есть предположения, что на поверхности Меркурия существует лед. В его атмосфере присутствует водяной пар, который вполне может находиться в твердом состоянии на полюсах внутри глубоких кратеров.

В XIX веке астрономы, наблюдая за Меркурием, не могли найти объяснения его орбитальному движению, используя законы Ньютона. Вычисленные ими параметры различались с наблюдаемыми. Чтобы объяснить это, была выдвинута гипотеза о том, что на орбите Меркурия находится еще одна невидимая планета Вулкан, воздействие которой и вносит наблюдаемые несоответствия. Настоящее объяснение было дано спустя десятилетия с помощью общей теории относительности Эйнштейна. Впоследствии имя планеты Вулкан было дано вулканоидам – предполагаемым астероидам, находящимся внутри орбиты Меркурия. Зона от 0,08 а.е. до 0,2 а.е. гравитационно стабильна, поэтому вероятность существования таких объектов довольно высока.

Ближайшая к Солнцу планета Меркурий по размерам лишь немного больше Луны: его

радиус равен 2439 км. Однако средняя плотность его (5,45 г/см3) заметно больше,

чем у Луны, она почти такая же, как у Земли. Ускорение силы тяжести на

поверхности 372 см/сек2, в 2,6 раза меньше земного. Период обращения вокруг

Солнца составляет около 88 земных суток. Из-за малых угловых размеров (около 7"

в наибольшей элонгации) и близости к Солнцу Меркурий (163) наблюдать

трудно, и данных об этой планете получено немного.

Радиолокация Меркурия позволила определить направление и период вращения

планеты. В этих экспериментах Меркурий облучался длительными, почти

монохроматическими импульсами радиоволн длиной 70 см с помощью гигантской

антенны диаметром 300 м (Пуэрто-Рико, радиоастрономическая обсерватория Аресибо;

см. 103). Отраженный импульс вследствие эффекта Доплера размывается по

частоте, если планета вращается. Видимое с Земли вращение складывается из

действительного осевого вращения и поворота, вызванного движением по орбите.

Проводя радиолокацию при различных положениях планеты на орбите, можно

определить как скорость, так и направление осевого вращения. Радиолокация

Меркурия на длине волны 70 см показала, что его вращение является прямым, с

периодом 58,6 ±0,5 суток. Это близко к 2/3 периода обращения планеты. Ось

вращения приблизительно перпендикулярна к плоскости эклиптики.

Опытные наблюдатели различают на диске Меркурия более или менее устойчивые

детали. Анализ визуальных зарисовок и фотографий показывает, что наблюдаемые на

них повторения можно объяснить периодами вращения

где T - период обращения вокруг Солнца. Третье из этих значений в пределах

ошибок совпадает с радиолокационным периодом. По наблюдениям деталей на диске

отношение t/T = 2/3 выдерживается с точностью не ниже 0,01 земных суток.

Нетрудно убедиться, что при таком отношении периодов меркурианские солнечные

сутки (интервал от одного восхода Солнца до другого) должны длиться вдвое дольше

меркурианского года!

Еще недавно было распространено убеждение, что периоды вращения и обращения

Меркурия равны и Меркурий обращен к Солнцу постоянно одной и той же стороной.

Причина понятна: из ряда чисел (10.7) выбиралось только первое, остальные

отбрасывались как маловероятные. Радиолокация показала ошибочность этой точки

Американский космический аппарат "Маринер-10" передал фототелевизионные

изображения Меркурия примерно с такой же степенью детальности, какая получается

при изучении Луны в наземные телескопы. Прямой перелет космического аппарата от

Земли к Меркурию требует больших затрат энергии. Эту трудность можно обойти,

идти к Меркурию. По такой орбите и совершил перелет к Меркурию "Маринер-10". На

164 приведено "мозаичное" изображение Меркурия, полученное с помощью

телевизионных камер "Маринера-10". Поверхность Меркурия очень напоминает лунную.

Первое, что бросается в глаза, - это большое число кратеров самых различных

размеров. Однако имеются и различия. На Меркурии нет обширных морских районов,

сравнительно гладких и более свободных от кратеров. С другой стороны, на

поверхности Меркурия имеются такие образования, как очень высокие (в несколько

километров) уступы, которые тянутся на расстояния в тысячи километров. Они

свидетельствуют о том, что планета сжималась в процессе своей эволюции.

164. "Мозаичная" (сложенная из многих отдельных изображений) фотография

Меркурия, полученная с помощью телевизионных камер "Маринера-10".

О подобии Луны и Меркурия говорит также сходство их фотометрических и

поляриметрических характеристик: зависимость звездной величины и поляризации от

фазы, отражательная способность поверхности. Как и на Луне, очень велики

перепады температуры поверхности, измеренные по инфракрасному излучению. В

полдень на экваторе максимальная температура достигает 700 ёК, а на ночной

стороне падает до 100ёК,. В то же время интенсивность теплового радиоизлучения

сантиметрового диапазона на ночной и дневной стороне мало отличается.

Следовательно, поверхностный слой грунта на Меркурии, так же как и на Луне,

представляет собой мелко раздробленную породу с относительно низкой плотностью

(реголит).

Атмосфера Меркурия имеет чрезвычайно малую плотность - концентрация не более 106

см -3 у поверхности. Такая концентрация газа в земной атмосфере имеется на

высоте 700 км. Состав атмосферы точно не известен; спектроскопические измерения

на "Маринере-10" обнаружили гелий (концентрация около 104 см -3), но,

по-видимому, должны быть и другие газы.

Меркурий имеет собственное магнитное поле. Напряженность его вблизи поверхности

у экватора около 0,002 э (в 300 раз меньше, чем на Земле). Ось магнитного диполя

приблизительно совпадает с осью вращения.

Спутников Меркурий не имеет.

В «окрестностях» Солнца, залитых потокам и ослепительно яркого спета, движется планета Меркурий. Видимое угловое расстояние планеты от центрального светила никогда не превышает 28 градусов, поэтому наблюдать Меркурий очень трудно. Большую часть времени он буквально утопает в лучах дневного светила и только ненадолго появляется на фоне золотистой утренней, зари или в блеске вечернего заката.

Все наблюдатели, указывали на одну особенность: планета вращается вокруг оси и обращается но орбите вокруг Солнца за один и тот же промежуток времени, равный 88 земным суткам. Об этом, казалось бы, свидетельствовали зарисовки расположения пятен на планетном диске. Получалось, что Меркурий обращен к Солнцу всегда одной стороной. А если так, то на одном его полушарии должен быть вечный день, а на другом — вечная ночь. Синхронность вращения планеты ученые объясняли приливным торможением Солнца, а и качестве наглядного примера указывали на Луну, повернутую одной стороной к Земле.

Во второй половине XX века представление о характере вращения Меркурия пришлось полностью пересмотреть. Этому способствовало бурное развитие радиофизических методов исследований. Точные данные о вращении планеты были получены в результате анализа сеансов радиолокации.

В 1965 году американские астрономы с помощью гигантского 305-метрового радиотелескопа в Пуэрто-Рико, радиолокационным методом определили период осевого вращения Меркурия в 2/3 продолжительности обращения по орбите. В земных солнечных сутках это составляет 58,6457. Таков в действительности период вращения Меркурия вокруг собственной оси по отношению к далеким звездам. Следовательно, на Меркурии не может быть ни вечного дня, ни вечной ночи. При такой скорости вращения одни солнечные сутки там равны без малого 176 (175,9371) земным суткам, или двум меркурианским годам (87,96855 . 2 = 175,9371). Другими словами, дни и ночи на Меркурии длятся по целому году! В перигелии — точке орбиты, ближайшей к Солнцу, — середина освещенного полушария Меркурия накаляется до 467°С. А па ночной стороне — леденящий холод: температура может опускаться до - 183°С.

В семье больших планет Меркурии отличается скромными размерами. Его диаметр в 2,61 раза меньше диаметра Земли. Следовательно, по объему планета меньше немного шара в 17,8 раза (2,61 . 2,61 . 2,61 = 17,8). В то же время по массе планета уступает Земле в 18,1 раза. Выходит, что средняя плотность Меркурия почти равна земной - она составляет 5,43 г/см3 (у Земли — 5,52 г/см3). И это в то время, когда недра планеты не испытывают сильного сжатия! Таким образом, после нашей Земли Меркурий является самок плотной планетой.

Некоторые исследователи считают, что Меркурий — это уникальная планета-рудник, которая по массе на 60% состоит из железа. Его массивное железное ядро окружено сравнительно тонкой силикатной оболочкой с мощными разветвленными рудоносными жилами, выходящими прямо на поверхность. Вполне возможно, что днем на поверхности Меркурия, испепеленной огненным дыханием близкого Солнца, образуются «озера» из расплавленных металлов (олова, свинца, цинка), похожие на изверженную вулканическую лаву.

Американский КА «Маринер—10» (1974 г.) передал на Землю около 3000 снимков поверхности планеты с разрешением до 50 м.

Сравнение снимков Меркурия с изображениями Луны говорит об их большом сходстве. Поверхность Меркурия тоже покрыта множеством кратеров ударного происхождения, и меркурианский ландшафт легко спутать с лунным. Но при внимательном изучении снимкой можно найти отличия: крупные кратеры встречаются на Меркурии реже, чем на Луне. Самый большой кратер на Меркурии носит имя великого немецкого композиторы Бетховена. Его диаметр достигает 625 км!

Следующим важным различием гористых ландшафтов Меркурия и Луны является присутствие на Меркурии многочисленных откосов, простирающихся на сотни километров. Изучение их структуры показало, что они образовались еще в ранний период развития планеты в результате глобального сжатия коры. Наличие на поверхности Меркурия хорошо сохранившихся больших кратеров говорит о том, что в течение последних 3—4 млрд лет там не происходило в широких масштабах движение участков коры, а также отсутствовала эрозия поверхности. Последнее обстоятельство почти полностью исключает существование в истории Меркурия сколько-нибудь существенной атмосферы.

На фотографиях поверхности Меркурия видно и несколько относительно гладких больших равнин, которые, очевидно, значительно моложе, чем сильно испещренные кратерами территории. Самой обширной равниной является Море Жары, или Море Зноя, достигающее в поперечнике 1300 км; расположено оно в экваториальной зоне планеты. Смотришь па него и невольно вспоминаешь лунное Море Дождей. И то и другое возникли в результате гигантских катастроф — столкновений с астероидными телами.

С помощью чувствительного магнитометра, установленного на «Маринсре-10», у Меркурия было обнаружено дипольное магнитное поле, направленное примерно вдоль оси вращения планеты. Но напряженность этого поля на поверхности Меркурия не достигает и 1% от напряженности магнитного поля Земли. Тем не менее магнитное моле Меркурии значительно сильнее, чем ноле Венеры или Марса.

По-видимому, для его генерации внутри планеты имеются необходимые условия.

Таким образом, в результате космических исследований было установлено, что Меркурий — это планета-парадокс: внешне и по истории формирования поверхности он похож на Луну, а по своему внутреннему строению обнаруживает удивительное сходство с. Землей. Даже магнитное поле Меркурия подобно земному.

0

Ближайшая к Солнцу из девяти больших планет; на нашем небе никогда не удаляется от дневного светила больше, чем на 28°, поэтому наблюдать Меркурий с Земли особенно трудно. Время от времени планету можно различить невооруженным глазом как едва заметную светлую точку среди чарующих красок вечерней или утренней зари. В телескоп Меркурий имеет вид серпика или неполного круга, изменения формы которого по мере орбитального движения планеты наглядно показывают, что мы наблюдаем шар, освещенный с одной стороны Солнцем. В период минимальной удаленности от Земли (средний минимум 92 млн. км, минимум миниморум около 80 млн. км) Меркурий на небе земного наблюдателя бывает расположен, к сожалению, возле самого Солнца и обращен к нам своим темным (ночным) полушарием. Такие неудобства наблюдений Меркурия с наземных обсерваторий усугубляют и без того значительные трудности, связанные с малостью угловых размеров объекта, со слабостью приходящего от него энергетического потока и с помехами в земной атмосфере.

Тем не менее исследователям удается отвоевывать у природы бесценные крупицы новых знаний путем совершенствования сложнейшей аппаратуры и методики наблюдения и ценой напряженной, а подчас даже самоотверженной, работы. До 1974 г. вся информация о Меркурии (а она достаточно обширна) была получена по наземным наблюдениям.

О Меркурии написаны превосходные обзоры. Однако за последние годы некоторые сведения были уточнены. В настоящем обзоре сделана попытка изложить сведения о физике этой планеты с использованием по возможности новейших данных.

Диаметр, масса и величины, производные от них Точные знания размеров и массы планеты совершенно необходимы для нахождения ряда параметров, характеризующих физические условия на поверхности и важных для космонавтики.

Линейные диаметры всех планет, полученные из угловых диаметров, измерявшихся с Земли, являются величинами, зависящими от численного значения астрономической единицы длины. В связи с возможными уточнениями последней исторически сложилась традиция выражать диаметры планет не в линейной мере, а в угловых секундах на расстоянии 1 а. е.

Результаты измерений экваториального диаметра Меркурия заключены в пределах от 6",2 до 6",9, т. е. согласуются между собой с точностью далеко не астрономической. Новые измерения дают 6",73 ±0",03, что соответствует величине 4882 ±30 км, тогда как применение метода Герцшпрунга показало D>6",79, т. е. D>4920 км.

Лучший метод нахождения массы любой планеты основан на использовании периодов обращения ее спутников. Поскольку у Меркурия таковых нет, для вычисления его массы используют трудно наблюдаемые эффекты гравитационного взаимодействия с другими небесными телами.

Отношение масса Солнца/масса планеты близко к 6,0*10 6 .

По данным о значениях массы и диаметра средняя плотность оценивается в пределах от 5,30 до 5,46.

Из оценок массы и диаметра планеты легко находятся ускорение силы тяжести и параболическая (вторая космическая) скорость на уровне поверхности; первая величина составляет около 38% от значения для Земли, а вторая - приблизительно 4,3 км/сек.

Первые опыты исследования Меркурия автоматическими приборами из космоса были осуществлены с борта космического аппарата «Маринер-10» (США) 29 марта и 21 сентября 1974 г. На Землю переданы изображения поверхности планеты. Из ра-диозатменных измерений выведена величина радиуса Меркурия, составляющая на широте 2°N 2440 ±2 км, а на широте 68°N - 2438 ±2 км. Анализ трассовых данных позволил уточнить массу Меркурия, которая составляет в единицах отношения массы Солнца к массе планеты 6 023 600 ±600. Новое значение средней плотности планеты 5,44 г*см -3 .

Высокую среднюю плотность Меркурия (по сравнению с плотностью вещества в земных недрах на уровне соответствующего давления) объясняют обилием тяжелых элементов. В составе Меркурия, по-видимому, преобладает железо. Вывод о высоком содержании железа и, следовательно, об ограниченном содержании силикатов приводит к допущению о значительно более низком содержании радиоактивных веществ в Меркурии, чем в веществе хондритовых метеоритов. Между тем известно, что распад радиоактивных элементов, содержащихся именно в силикатах, является одной из причин разогревания планетных недр. Значит, термическая история и современное состояние недр Меркурия в значительной мере зависят от среднего химического состава. Кроме того, следует учитывать дополнительные факторы, которых мы не знаем. К ним относятся скорость конгломерации планеты из вещества протопланетного облака, обилие и состав радиоактивных элементов в этом веществе, лучистая энергия, получаемая извне на ранних этапах эволюции. Проведенные С. В. Маевой расчеты термической истории Меркурия показали, что на всех этапах эволюции температура в недрах планеты никогда не достигала значения, необходимого для расплавления силикатного вещества или железа. Расслоение вещества по удельному весу (гравитационная дифференциация) в твердых недрах планеты происходит значительно медленнее, чем в случае расплавления. Тем не менее некоторые специалисты допускают, что Меркурий может иметь ядро, Различные модели внутреннего строения Меркурия рассмотрены и модели с однородным распределением металлического железа и с его сегрегацией в ядро.

Поверхность Меркурия . Фотометрические свойства и современные данные о рельефе

Поверхность Меркурия, освещенная солнечными лучами, кажется яркой, но измерения показали, что она довольно темная, точнее - темно-бурая. Визуальное альбедо Бонда 3 для Меркурия равно 0,056 а интегральное 0,09. Средняя яркость дневной поверхности резко возрастает с приближением угла фазы к нулевому значению. Кривые изменения яркости в зависимости от угла фазы для Меркурия и Луны практически совпадают. Спектральная отражательная способность увеличивается с возрастанием длины волны по крайней мере до 1,6 мкм. Приведенные к нулевой фазе результаты измерений спектральной отражательной способности Меркурия в диапазоне от 0,32 до 1,05 мкм изображены на рис. 1, заимствованном из работы. Кривая отражательной способности Меркурия сходна с таковой для гористых и морских участков поверхности Луны и отличается от кривых для дна лунных кратеров. Исходя из этих результатов, Мак-Корд и Адамс пришли к заключению, что поверхность Меркурия покрыта, вероятно,


луноподобным твердым веществом, богатым темными вулканическими стеклами, например пироксеном. Причиной низкого альбедо может быть большое содержание в минералах железа и титана.

При исключительно благоприятных условиях, которые случаются довольно редко, на

поверхности Меркурия в телескоп можно заметить темные и светлые пятна.

Неоднократно предпринимались попытки составить карту Меркурия. Исторические карты мы здесь рассматривать не будем, поскольку их составители пользовались ошибочными данными о периоде осевого вращения планеты. Новые попытки составить карту Меркурия на основе современных представлений были предприняты Камишелем и Дольфюсом и Крукшенком и Чепменом. Более современная, улучшенная карта деталей поверхности Меркурия с указанием координат избранных деталей была составлена в 1972 г. Мюрреем, Смитом и Дольфюсом по материалам фотографических и визуальных наблюдений за 1942- 1970 гг. в астрономических обсерваториях Пик-дю-Миди (Франция) и Нью-Мехико (США).

Эта карта изображена на рис. 2. Долготы даются в новой системе отсчета, рекомендованной на 14-й сессии Международного астрономического союза (Брайтон, 1970). По заключению составителей карты видимый контраст деталей на поверхности Меркурия несколько меньше, чем в случае контрастов море - материк на Луне. Возможно, что уменьшение контраста связано с размыванием изображений темных деталей при наблюдениях Меркурия, так как угловое разрешение получается в 300 раз худшее, чем при наблюдениях Луны. Область между 350 и 90° термографической долготы, занимающая более четверти поверхности планеты, практически лишена больших контрастных деталей.

Авторы работы отмечают, что детали на поверхности Меркурия оставались неизменными на протяжении более чем 30-летнего периода наблюдений и появление атмосферной дымки в каких-либо областях планеты не обнаружено.

Исследования рельефа поверхности Меркурия выходят за пределы возможностей оптических методов современной наземной астрономии. В последнее десятилетие для изучения поверхности ближайших планет с успехом используют радиолокацию. Возможности радиолокации планет возрастают как в результате совершенствования аппаратуры, так и вследствие применения новой методики анализа данных. Однако Меркурий является очень трудным объектом исследо

ваний, поскольку принимаемый от него сигнал радиоэхо имеет мощность, приблизительно в 100 раз меньшую, чем от Венеры.

До 1970 г. группа исследователей Массачусетского технологического института безуспешно пыталась использовать двумерные радарные спектры (время задержки и частота) для оценки профиля поверхности Меркурия. Слабость отраженного сигнала не позволила выделить заметные детали рельефа или найти отклонения поверхности Меркурия от поверхности сферы. Два более успешных эксперимента по радиолокации Меркурия были проведены в 1970-1971 гг. в Голдстоуне Лабораторией реактивных двигателей Калифорнийского технологического института на волне 12,5 см и в Хайстеке Массачусетским технологическим институтом на волне 3,8 см. Была достигнута чувствительность, достаточная для изучения характеристики рассеяния. И функция рассеяния и поляризация излучения на волне 12,5 см показали, что поверхность Меркурия в значительной мере занята мелкими неровностями. По измерениям на волне 3,8 см в нескольких наблюдавшихся участках экваториальной области планеты средняя величина уклонов найдена равной приблизительно 10°. Эта величина заметно изменяется с долготой. На Меркурии наблюдались топографические детали с вариациями радиуса планеты порядка 1-3 км.

Радиолокация позволила измерить «коэффициент отражения» планеты в микроволновом диапазоне; он оказался примерно таким же, как у Луны. Поперечник рассеяния Меркурия изменялся во время наблюдений в пределах от 4 до 8% от оптического поперечника.

Параметры осевого (суточного) вращения планеты.

Неоднократно предпринимались попытки найти период осевого вращения планеты по наблюдениям пятен на поверхности. Но старые визуальные наблюдения приводили к ложному выводу о том, что Меркурий повернут к Солнцу всегда одним и тем же полушарием, т. е. к выводу о равенстве сидерического периода осевого вращения и сидерического периода обращения по орбите (87,97 суток). Такое ошибочное мнение сохранялось вплоть до открытия Петтенджила и Дайса, которые по данным радиолокационных исследований нашли, что сидерический период осевого вращения Меркурия равен 59 ±3 суток. Впоследствии это значение уточнялось. Таким образом, на самом деле Меркурий вращается, но столь медленно, что его осевое вращение трудно заметить в течение короткого промежутка времени, благоприятного для визуальных наблюдений. Многие авторы объясняют долгую жизнь ошибочной гипотезы синхронного вращения планеты «роковой» квазисоизмеримостью периода этого вращения с периодом наступления условий, наиболее благоприятных для наблюдения Меркурия (для одной астрономической обсерватории за пределами тропического пояса - только с таким уточнением утверждение будет справедливо). Необходимое стечение обстоятельств повторяется через три синодических периода, т. е. через 348 суток, а за это время Меркурий успевает повернуться приблизительно на целое число оборотов как по отношению к Солнцу, так и к Земле. В таком случае видимое размещение деталей на диске планеты и положение подсолнечной точки среди них воспроизводятся с мало заметными изменениями.

Впрочем, именно оптические наблюдения помогли уточнить период вращения Меркурия после его грубой, но надежной оценки радарным методом. Камишель и Дольфюс на основе обработки архивов обсерватории Пик-дю-Миди за 1942-1966 гг. нашли период равным 58,67 ±0,03 суток. Смит и Риис также использовали многолетние фотографические архивы и получили период вращения 58,663 ±0,021 суток. Точность радарных наблюдений непрерывно улучшается и заметно приблизилась к точности оптических методов. Новые радарные наблюдения дают период, равный 58,65 суток, с ошибкой не более 0,4%.

Мюррей, Смит и Дольфюс дополнили прежние архивы фотоснимков и зарисовок Меркурия новыми оптическими наблюдениями на обсерваториях Пик-дю-Миди и Нью-Мехико и получили период вращения равным 58,644 ±0,009 суток. Направление оси вращения планеты найдено перпендикулярным плоскости орбиты с вероятным отклонением не более 3°.

Период осевого вращения Меркурия - величина не случайная: промежуток времени 58,6462 суток составляет в точности 2 /з от орбитального периода Меркурия. Это интересный вариант резонанса в спиновых колебаниях, вызванных действием гравитации Солнца на планету, внутри которой размещение массы нельзя считать строго концентрическим. Вращение с периодом 2 /з периода обращения должно быть устойчивым: малая ось эллипсоида инерции планеты при каждом возвращении Меркурия в точку перигелия бывает ориентирована вдоль направления к Солнцу. В работе показано, что для возникновения спиново-орбитально-го резонанса 3/2 требуется величина сжатия эллипсоида инерции в плоскости экватора (В - А)/C>10 -5 , т. е. весьма незначительная.

Атмосфера Меркурия

Дольфюс на основе измерений поляризации рассеянного планетой света в различных участках спектра нашел атмосферное давление у поверхности Меркурия близким к 1 мб. Мороз получил оценку такого же порядка величины (содержание С0 2 , равное 0,З:7,0 г/см 2) по избытку поглощения над теллурическим в полосе CO2 около 1,6 мкм в спектре Меркурия. Однако попытка Биндера и Крукшенка повторить измерения Мороза дала отрицательный результат. Что касается особенностей поляризации Меркурия, то О’Лири и Ри объясняют их одними только свойствами поверхности, без привлечения атмосферных эффектов.

В работе Белтона и др. по измерениям в полосе 1,05 мкм был найден верхний предел содержания СО2 на Меркурии, равный 5 м*атм (парциальное давление у поверхности менее чем 0,35 мб), а Бергстрал и др. по наблюдениям полосы около 1,20 мкм оценили, что верхний предел не превосходит 0,58 м*атм (парциальное давление приблизительно 0,04 мб). Эти данные ставят под сомнение наличие СО2 на Меркурии.

Чтобы молекулы газа не диссипировали с Меркурия, они должны быть, во-первых, достаточно тяжелыми, а во-вторых, устойчивыми к диссоциации под действием солнечного излучения. Этим критериям удовлетворяет достаточно распространенный в солнечной системе Аr 40 . Наблюдения не Исключают аргоновую атмосферу с давлением у поверхности Меркурия в пределах 1 мб, но ее существование - только гипотеза.

Сходство фотометрических свойств поверхности Меркурия и Луны может служить аргументом (правда, не очень убедительным) в пользу предположения, что поверхность Меркурия подвергалась воздействию солнечного ветра. Исходя из этого, Саган и О’Лири и Ри определи верхний предел атмосферного давления у поверхности планеты равным приблизительно 10 -5 мб, Белтон, Хантен и Мак-Элрой на основе вычислений темпа диссипации получили верхний предел близким к 10 -6 мб. Бенкс и др. , обсудив различные возможные модели атмосферы Меркурия, допускают существование там экзосферной модели, состоящей из Не 4 , Ne 20 и Аr 40 с верхним пределом суммарного обилия 2-10 14 частиц в столбе с единичным сечением. Структура такой модели определяется солнечным ветром.

Ультрафиолетовый эксперимент на «Маринере-10» подтвердил, что Меркурий окружен тонкой атмосферой с полным давлением у поверхности не более 2 * 10 -9 мбар. Установлены верхние пределы обилия различных газов. Наиболее обильными компонентами могут быть Ne, Аr, Хе. Среди других газов обнаружен, в частности, Не, парциальное давление которого у поверхности составляет 2*10 -12 мбар.

Условия инсоляции и температура на поверхности

Определяемая совместным действием вращения и обращения длительность одних солнечных суток на Меркурии равна в точности трем звездным меркурианским суткам или двум меркурианским годам и составляет около 176 наших дней, т. е. средних солнечных суток всемирного времени. Солнце на небе Меркурия движется с востока на запад неравномерно и заметно меняет видимые размеры вследствие эксцентриситета орбиты и периодических изменений гелиоцентрической угловой скорости планеты. Дважды за одни солнечные сутки (а именно - в каждом перигелии) видимые размеры Солнца увеличиваются, и оно приостанавливается, затем его движение приблизительно на сотню часов сменяется на попятное, после чего Солнце вновь приостанавливается и берет курс на запад.

Количество солнечной энергии, получаемой в единицу времени единичной площадкой, перпендикулярной солнечным лучам (так называемая солнечная постоянная, равная 2,00±0,04 кал/см 2 * мин на верхней границе земной атмосферы), на Меркурии в перигелии приблизительно вдвое больше, чем в афелии и в 10 раз больше, чем на Земле, т. е. достигает 14 квт/м 2 . При этом на различных термографических долготах экватора суточный цикл освещения неодинаков. Около долгот 0 и 180° Солнце в верхней кульминации имеет максимальные угловые размеры и движется в небе очень медленно, тогда как около долгот 90 и 270° оно в полдень имеет наименьшие угловые размеры и пересекает небосклон сравнительно быстро, замедляя движение только у горизонта.

Дневное нагревание поверхности уменьшается с ростом широты места вплоть до полюсов вращения. Интересно заметить, что на самых полюсах могут быть условия непрерывного или почти непрерывного освещения: Солнце движется вдоль математического горизонта с периодичностью 176 суток, при этом центр Солнца погружается под горизонт каждые 38 суток на величину, равную наклону экватора планеты к орбите (наклон меньше, а может быть, значительно меньше 3°); верхний край Солнца если и скрывается, то ненадолго, так как глубина погружения центра под линию математического горизонта приблизительно равна радиусу Солнца, видимого с Меркурия.

С большой длительностью дня и ночи на Меркурии связано резкое различие температуры полуденных и полуночных участков поверхности, а близость планеты к Солнцу и низкое альбедо приводят к сильному нагреванию поверхности в течение дня.

Температура Меркурия найдена по измерениям собственного теплового излучения планеты в той части инфракрасного диапазона, где вклад отраженного солнечного излучения пренебрежимо мал. На среднем расстоянии от Солнца яркостная температура поверхности в подсолнечной точке Меркурия соответствует планковскому излучению абсолютно черного тела при температуре Т в = = 613° К. Цветовая температура (по отношению интенсивности при l 2,2 и 3,4 мкм) в перигелии T с = 670±20° К.

С наиболее значительными техническими трудностями связана инфракрасная термометрия темной стороны Меркурия, так как требует, помимо высокого углового разрешения аппаратуры и кроме идеальных атмосферных условий, также надежной защиты аппаратуры от излучения серпа дневного полушария планеты и особенно высокой чувствительности детектора. Тем не менее такие измерения удалось выполнить. Мардок и Ней в диапазоне 3,75-12,0 мкм нашли температуру поверхности на ночной стороне 111 ±3° К. Таким образом, амплитуда суточных колебаний температуры на Меркурии превышает 500° К.

Инфракрасным радиометром на «Маринере-10» было измерено тепловое излучение планеты в полосе спектра около 45 мкм при минимальных размерах наблюдаемого элемента поверхности 40 км. В околоэкватори-альном скане наиболее низкая яркостная температура зарегистрирована около местной полуночи и составляет 100° К. Закон понижения температуры после захода Солнца такой же, как в случае однородного пористого материала с тепловой инерцией 0,0017 кал * см -2 *сек -72 *‘’К -1 с флуктуациями этой величины до 0,003 в отдельных районах.

Современные наблюдения теплового излучения Меркурия не ограничиваются инфракрасным диапазоном. Ведутся радиоастрономические измерения в микроволновом диапазоне, которые позволяют определить тепловой режим подповерхностного слоя планеты на различных глубинах и найти физические свойства наружного покрова планеты.

Чем больше длина волны принимаемого излучения, тем большая глубина ответственна за его происхождение. Глубина проникновения электромагнитных колебаний (т. е. толщина радиоизлучающего слоя) l э =1/x, где x (l) - коэффициент поглощения электромагнитной волны l - длина волны. Не менее важно для нас другое выражение той же величины: l Э =fl Т, где f- коэффициент, зависящий от свойств вещества, l Т - глубина проникновения температурной волны, определяемая уменьшением амплитуды колебаний температуры в е раз по сравнению со значением на поверхности. На глубине, в 3-4 раза превышающей l T , колебания температуры практически отсутствуют. Этим определяется толщина слоя породы, прогреваемого Солнцем в течение дня. Теория вопроса детально изложена в работе.

Температура, измеренная в микроволновом диапазоне, зависит от соотношения между толщиной прогреваемого Солнцем слоя породы и толщиной радиоизлучающего слоя.

Обзоры результатов радиометрических наблюдений Меркурия на волнах от 0,19 до

11,3 см. Численные значения теплофизических параметров Меркурия приведены в конце этого раздела.

Теплофизическое поведение наружного покрова планеты говорит о его чрезвычайно низкой теплопроводности. Амплитуда суточных колебаний температуры на некоторой глубине, как и следовало ожидать, получается существенно меньше, чем по измерениям в инфракрасном диапазоне. Данные микроволновых радиоастрономических наблюдений показывают, что усредненная по всему видимому диску Меркурия яркостная температура изменяется и с углом фазы i, и с долготой L центра диска, а также зависит от отношения глубин проникновения электрической и тепловой волн. Наиболее полные результаты наблюдений, обработанные по методу наименьших квадратов, представляются следующими выражениями:

где l - длина волны электромагнитного излучения, i - угол Солнце - планета - Земля, L - термографическая долгота в системе долгот. Положение нулевого меридиана в этой системе отличается от его положения в принятой в 1970 г. системе Международного астрономического союза.

Значительные различия между выражениями температуры на миллиметровых и сантиметровых волнах нельзя объяснить одним только отличием эффективной глубины излучающего слоя. Касаясь применения к Меркурию теории радиоизлучения, разработанной для Луны, Гэри указал на необходимость учета в данном случае температурной зависимости теплофизических параметров.

Моррйсон выполнил расчеты усредненных яркостных температур Меркурия в различных диапазонах теплового излучения в функции фазового угла и положения на орбите и с учетом зависимости теплопроводности от температуры.


Вопрос о сходстве некоторых свойств наружного слоя Меркурия и Луны

Сопоставление результатов только что упомянутых расчетов c результатами наземных наблюдений позволило Моррисону выбрать наиболее вероятные значения парамет-

ров, характеризующих тепловые и электрические свойства внешнего слоя Меркурия: плотность р=1,5±0,4 г/см 3 ; тепловая инерция l= (крс) 1/2 = (15 ±6). * 10 -6 кал/см 2 * сек 1/2 * град, что заметно отличается от значения, полученного по данным «Маринера-10»;

параметр f/l=0,9±0,3 см -1 , где f - отношение глубин проникновения тепловой и электрической волн, l - длина волны; коэффициент теплопроводности k=(4 ±2) *10 2 кал/см*сек*град; глубина проникновения тепловой волны l T =11±6 см; диэлектрическая постоянная e=2,9 ±0,5; тангенс угла потерь tg А = (0,9 ±0,4) *10 -2 . Сходство характеристик Меркурия и Луны позволяет допустить отсутствие резких различий в структуре их наружного слоя. Однако в вопросе о сходстве минерального состава их поверхности следует проявлять осторожность. До тех пор, пока мы не имеем экспериментальных данных о составе поверхности Меркурия, наши представления об этом сильно зависят от решения другой проблемы: подвергалась ли планета внутреннему расплавлению и гравитационной дифференциации? Луна, как известно, содержит в наружных слоях продукты расплавления недр. Высокая средняя плотность Меркурия приводит к построению моделей его внутреннего строения, которые, по-видимому, не могли подвергнуться расплавлению. Возможно, что внешнее сходство поверхности Меркурия с Луной в значительной мере обусловлено сходством процессов переработки минералов в реголит внешними факторами.

Таковы основные современные представления о природе Меркурия. Дальнейший рост уровня наших знаний в этой области науки возможен, видимо, только путем проведения новых исследований.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Страница 2

На протяжении длительного времени Меркурий наблюдался во Франции – сначала Антониади в Медоне, а позднее Дольфюсом на Пик де Мидея. Все наблюдатели согласны, что Меркурий медленно вращается вокруг своей оси, будучи всегда обрашенным к Солнцу одной стороной, если не считать не больших либраций. Таким образом, период вращения Меркурия, составляющий 88 суток, согласно Дольфюсу, равен с точностью до 1/10000 сидерическому периоду обращения планеты вокруг Солнца. Так как Солнце освещает только одну сторону планеты, Склапарелли и Антониаде наблюдали Меркурий вечером, а Дольфюс утром. Чтобы сравнить карты Склапарелли и Антониаде с картой Дельфюса, их следует повернуть примерно на 15О. Дельфюс полагает, что наблюдаемые детали можно привести к совпадению, считая, что угол наклона экватора Меркурия к эклиптике равен 7О.

Поскольку оптическая разрешающая способность составляет приблизительно О”,3, т.е.1/13-1/20 видимого диаметра Меркурия, на рисунках, очевидно, представлены почти все детали, которые когда либо наблюдались с поверхности Земли.

Сравнение всех трех карт Меркурия на первый взгляд наводит на мысль, что наблюдатели расходятся в своих наблюдениях, но более тщательная проверка выявляет согласие в наиболее существенных чертах. Два человека никогда не нарисуют плохо видимый объект одинаково. Чтобы убедиться в этом важном для наблюдательной астрономии факте, поместите одну из этих карт на таком расстоянии, чтобы детали были едва различны, и зарисуйте, что вы видите. Сравнение рисунка с оригиналом может дать удивительные результаты. Несомненно, поверхность Меркурия во многом сходна с поверхностью Луны, хотя мы и не знаем, действительно ли на поверхности Меркурия имеются моря и кратеры. Однако среднее визуальное альбедо Меркурия (0,14) вдвое больше, чем альбедо Луны.

Попытки доказать существование у Меркурия атмосферы в основном давали отрицательные результаты, хотя иногда наблюдатели высказывали подозрение, что легкие беловатые облачка затуманивали более темные пятна. Скорость убегания для Меркурия составляет всего 3,7 км/сек, а температура на его поверхности может быть гораздо более высокой – выше, чем для Луны. Следовательно, лишь самые теплые газы могли бы остаться на поверхности планеты. Точно также, выбрасываемые во время солнечных бурь частицы, должны, даже в большей степени, чем в случае Луны, вышибать атомы остаточной атмосферы Меркурия. Когда Меркурий наблюдается в виде серпа, то его рога не выходят за пределы их геометрических граней, что указывает на отсутствие сколько-нибудь значительных сумеречных эффектов – рассеяния или рефракции в атмосфере. Однако Дельфюс считает, что свет рогов характеризуется небольшой избыточной поляризацией. Если этот эффект обусловлен наличием атмосферы, то последняя в целом составляет не более 1/300 атмосферы Земли. Петтит (обсерватории Маунт Вилеон и Маунт Баломар) из инфракрасных измерений Меркурия нашел, что температура в подсолнечной точке в перигелии сильно возрастает, достигая 415ОС; в афелии она составляет около 285ОС. При 415ОС плавится олово и свинец; даже цинк находится близ своей точки плавления (419ОС). Поэтому Меркурий даже с большим основанием, чем Плутон, мог быть назван в честь бога преисподней.

В противоположность очень высоким значениям температуры, на стороне Меркурия, обращенной к Солнцу, на вечно темной ее стороне температура очень низкая. Тепло может проникать туда только через твердое тело планеты, посредством теплопроводности, а это процесс крайне медленный, или же посредством конвенции в остатках атмосферы, но последнее можно лишь предполагать. Температура не освещенного полушария, вероятно не превышает 10О, считая от абсолютного нуля, т.е. там даже холоднее, чем на Плутоне. Таким образом, Меркурий проявляет своего рода “раздвоение личности”, совмещая в себе обе крайности значений температуры планет. Интересно знать, не могут ли оказаться захваченными и замороженными на темной стороне такие газы, как азот, углерод, углекислый газ, кислород и другое. Для ответа на этот вопрос требуется более строгая проверка при помощи космических зондов и радиолокационных наблюдений.

На очень большое сходство между Меркурием и Луной указывают их размеры, характер вращения, разряженность атмосферы и внешний вид. Оба этих тела практически одинаково отражают свет, как в отношении цвета, так и в отношении интенсивности при различных углах отражения. Лучи света, падающие перпендикулярно к поверхности, отражаются в направлении падения достаточно эффективно, но при падении света под большими углами отражение бывает очень слабым. Даже поляризация или плоскость колебаний отраженного света для Меркурия и Луны одинакова. Все это дает нам право сделать вывод, что поверхность Меркурия сходна с поверхностью Луны, как в отношении отдельных деталей, так и в целом. Несомненно, поверхность Меркурия неправильной формы и неровная.

Средняя плотность Меркурия, хотя она определена не слишком точно, по-видимому, почти в 5,5 раза выше плотности воды, т.е. примерно равна плотности Земли. Так как масса Меркурия мала, то увеличение его плотности, вследствие сжатия, ограничено величиной 1-2%, а средняя плотность основных составляющих его материалов, если извлечь их из планеты, согласно подсчетам Юри составит 5,4 вместо 4,4 для Земли. Следовательно, доля более тяжелых элементов для Меркурия должна быть вполне измеримое железное ядро. В этом отношении Меркурий сильно отличается от Луны и, по существу, является самым плотным телом значительных размеров в солнечной системе. Эволюционный процесс, в результате которого возникла высокая плотность, пока еще не вполне понятен, но, несомненно, он связан с близостью Меркурия к Солнцу.

4. Рельеф поверхности Меркурия

С пролетной траектории космического аппарата “Маинер-10” в 1974 г. было сфотографировано свыше 40% поверхности Меркурия с рзрешением от 4 мм до 100 м, что позволило увидеть Меркурий примерно так же, как Луну в темноте с Земли. Обилие кратеров – наиболее очевидная черта его поверхности, которую по-первому впечатлению можно уподобить Луне. И не случайно даже специалисты – селенологи, которым показали эти снимки вскоре после их получения приняли их за фотографии с Луны.

Действительно, морфология кратеров близка к лунной, их ударное происхождение не вызывает сомнений: у большинства виден очерченный вал следы выбросов раздробленного при ударе материала с образованием в ряде случаев характерных ярких лучей и поле вторичных кратеров. У многих кратеров различима центральная горка и террасная структура внутреннего склона. Интересно, что такими особенностями обладают не только практически все крупные кратеры диаметром свыше 40-70 км, но и значительно большее число кратеров меньших размеров, в пределах 5-70 км (конечно, речь здесь идет о хорошо сохранившихся кратерах). Эти особенности можно отвести как на счет большей кинетической энергии тел, выпадавших на поверхность, так и на счет самого материала поверхности.

Степень эрозии и сглаживание кратеров различна. Например, хорошо заметные лучевые структуры говорят о том, что она невелика, в то же время у ряда кратеров сохранились едва заметные кромки. В целом меркурианские кратеры по сравнению с лунными менее глубокие, что также можно объяснить большей кинетической энергией метеоритов из-за большего, чем на Луне ускорения силы тяжести на Меркурии. Поэтому образующий при ударе кратер эффективнее заполняется выбрасываемым материалом. По этой же причине вторичные кратеры расположены ближе к центральному, чем на Луне, и отложения раздробленного материала в меньшей степени маскируют первичные формы рельефа. Сами вторичные кратеры глубже лунных, что опять же объясняется тем, что выпадающие на поверхность осколки испытывают большее ускорение силы тяжести.

Так же, как и на Луне, можно в зависимости от рельефа выделить преобладающие неровные “материковые” и значительно более гладкие “морские” районы. Последние преимущественно представляют собой котловины, которых, однако, существенно меньше, чем на Луне, их размеры обычно не превышают 400-600 км. К тому же, некоторые котловины слабо различимы на фоне окружающего рельефа. Исключение составляет упоминавшаяся обширная котловина Канорис (Море Жары) протяженностью около 1300 км, напоминающая известное Море Дождей на Луне. Возможно, что имеются и другие подобные котловины на оставшейся пока не отснятой большей части поверхности планеты. Морфология обрамляющих валов, поля вторичных кратеров, структура поверхности внутри котловины Канорис дают основания предполагать, что при ее формировании было выброшено больше материала, чем при образовании Моря Дождей, и что в дальнейшем могли последовательно происходить процессы дополнительного проседания и поднятия дна, связанные с возможным оттоком магмы и изостатическим выравниванием.

 


Читайте:



Туз кубков: подробное описание

Туз кубков: подробное описание

Туз Кубков – Младший Аркан В астрологическом плане Тузу Кубков соответствуют планеты Юпитер и Нептун в гармоничном аспекте к Солнцу, что...

Пошаговый рецепт приготовления пирога из лаваша

Пошаговый рецепт приготовления пирога из лаваша

Лаваш пришёл к нам из армянской кухни. В восточных семьях в пресные лепёшки заворачивают шаурму, рис или халву, подают вместе с блюдом люля-кебаб....

Иван Нагибин: "Сидеть на "лавке"?

Иван Нагибин:

«Я помню матчи в Премьер-лиге, все мною забитые голы, а они всегда трудные и запоминающиеся. Финал Кубка России Лига Европы, где играют лучшие...

Как привлечь взаимную любовь

Как привлечь взаимную любовь

Любовь проявляется во всех сферах жизни: одни дамы питают страсть к живописным пейзажам, другие находят утешение в лице новорождённого младенца,...

feed-image RSS