Главная - Дача
Устройство садового фонарика на солнечной батарее. Садовый светодиодный светильник схема. Виды светильников на солнечных батареях

Сегодня на садовых участках все встречаются фонари или светильники, которые работают на солнечных батареях. Садоводы смело применяют их в ландшафтном дизайне и в виде дополнительного освещения отдельных участков сада. Солнечные светильники целесообразно применять в тех ситуациях, когда нет возможности провести электрическое освещение или его обустройство экономически невыгодно.

Как устроены фонари на солнечных батареях?

В солнечных светильниках можно выделить следующие элементы :

Солнечная батарея под воздействием ультрафиолета вырабатывает электрический ток и заряжает им аккумулятор, который в свою очередь в темное время суток питает светодиод.

При полном заряде аккумулятора солнечные фонари работают 8 часов. Причем работа светильника не зависит от погодных условий, потому что ультрафиолет проникает сквозь облака. Только поздней осенью аккумулятор фонаря не может зарядиться полностью. Это связано с тем, что световой день становится короче. Даже в таких условиях светильники будут работать, правда, немного меньше.

Основные характеристики садовых солнечных фонарей

Солнечные светильники можно объединить в три группы по следующим характеристикам:

Преимущества садовых светильников на солнечных батареях

Недостатки садовых солнечных светильников:

  • требуется убирать на зиму , т. к. у них не защищен аккумулятор от низких температур (исключение составляют садовые фонари);
  • светильник во время зарядки желательно устанавливать таким образом, чтобы на него падал прямой солнечный свет;
  • больше подходят для декоративного освещения;
  • светильники достаточно дорого стоят.

Установка и эксплуатация садовых солнечных фонарей

Установка садовых фонарей очень проста. Для установки на ровной поверхности необходимо использовать светильники со специальной ножкой. Если у фонаря ножка выполнена в виде колышка , то его втыкают в землю. В твердой почве предварительно надо выкопать углубление, затем поместить в него фонарь и аккуратно утрамбовать землю со всех сторон. Нельзя использовать молоток и грубую силу. Светильник от этого сломается.

С помощью солнечных фонарей можно выделить:

Уход за светильниками заключается в том, чтобы периодически вытирать с них пыль, удалять грязь и убирать на зиму в дом. Несмотря на то, что солнечные светильники очень надежны , может возникнуть необходимость их починки. Сначала требуется проверить уровень заряда солнечной батареи и только потом включать. Если лампочка не включается, необходимо проверить на исправность аккумулятор. Для этого следует зайти в затемненное помещение и проверить места пайки. При обнаружении поврежденного проводка его нужно припаять, используя холодную сварку. Если результаты ремонта отсутствуют или они незначительны, необходимо произвести замену солнечной батареи.

Садовые светильники на солнечных батареях могут стать прекрасной альтернативой электрического освещения в отдаленных участках сада. Разнообразие форм, цветов, размеров позволяет использовать их в ландшафтном дизайне. Выполненные в виде фигур гномов или животных они превосходно дополнят альпийскую горку . В темное время суток такие фонари не только акцентируют внимание на красивых уголках сада. Подсветив ступеньки, можно подниматься или спускаться по лестнице, не опасаясь падения. Фонари можно расставлять группами или хаотично. Какой способ выбрать - зависит только от предпочтений владельца участка.

Грамотно сделанное освещение парка или дачного участка способно превратить безжизненное унылое пространство в фантастическую сказку. Садовый светодиодный светильник схема которого рассмотрена ниже используется для организации садово-паркового освещения и подсветки. Светильники при этом выполняют двойную функцию: они являются источником искусственного освещение и предметами декора вашего сада

Купил в китайском интернет магазине готовый садовый светодиодный светильник, но его монтаж оказался предельно упрощен, провода отваливались после двух изгибов, узлы были закреплены каплями термоклея или отламывающимися пластмассовыми выступами - все указывало на то, что передо мной одноразовая игрушка. Расскажу лишь о самой схеме и конструкции, в расчете на ее возможное самостоятельное повторение читателями и использование заложенных там решений в других устройствах.

Лампочку в фонаре заменял светодиод небольшой мощности, бело-зеленого свечения. Аккумуляторной батареи тоже не было - под шляпкой грибка обнаружился всего один элемент размера АА емкостью 800 мА/час, хотя место было предусмотрено под два элемента (экономия, однако!). Не густо, и шансы на использование фонарика источником питания для какого бы то ни было устройства резко упали, ведь номинальное напряжение щелочного аккумуляторного элемента - всего 1,2 В.

Сразу же возник вопрос: а как же может гореть светодиод при таком питании, ведь напряжение зажигания самых распространенных красных светодиодов - около 1,8 В, а зеленых и белых еще больше - до 3 В? Значит, на маленькой печатной плате (25x30 мм), содержащей три транзистора и не более десятка других деталей, был собран еще и повышающий инвертор!

Прежде чем браться за тяжкий труд по восстановлению принципиальной схемы, срисовывая ее с печатной платы, захотелось исследовать возможности самого главного и ценного элемента конструкции - солнечной панели. Ее размеры около 70x70 мм, а сквозь защитное стекло ясно видны 7 параллельных полосок шириной около сантиметра - 7 элементов панели.

Как известно, кремниевые солнечные элементы при их освещении развивают ЭДС порядка 0,5... 0,6 В, поэтому следовало ожидать ЭДС батареи из семи элементов около 4 В. Так и оказалось - в тени и при облачном небе панель развивала 3,5 В, а на ярком солнце - 4,5 В.

Соединенная с одним аккумуляторным элементом, такая панель работает в режиме почти короткого замыкания. Это не страшно, поскольку внутреннее сопротивление панели значительно, и ток короткого замыкания не превышает 60 мА даже при ярком солнечном свете. Но КПД заряда невелик, и для полной зарядки аккумуляторного элемента нужно как минимум два солнечных летних дня (20...40 часов). Никаких устройств, предохраняющих элемент от перезарядки при выключенном светодиоде, обнаружено не было.

Другой важный элемент устройства - датчик освещенности, собственно и позволяющий фонарику включаться в темное время суток и выключаться днем. Это фоторезистор, оформленный в плоском цилиндрическом корпусе с двумя выводами, размерами не больше транзистора. Его отдельное исследование показало, что темновое сопротивление превосходит 2 МОм, а на свету резко уменьшается - в тени до 10...20 кОм, а при ярком солнечном свете даже до сотен Ом.

Обратимся теперь к принципиальной схеме устройства. Солнечная панель SP постоянно соединена с аккумуляторным элементом ВАТ через диод D1 (обозначения элементов сохранены такими же, как на печатной плате, имеющей название SY-H019B). Диод пропускает только зарядный ток от панели к аккумулятору и предотвращает его разряд через внутреннее сопротивление панели в темноте. Установка такого защитного диода обязательна в любых устройствах с солнечными панелями.

На транзисторе Q1 собран ключ, срабатывающий в зависимости от степени освещенности датчика PR. В темноте транзистор открыт током смещения, протекающим от источника питания через резистор R1. На свету датчик замыкает этот ток «на себя», напряжение базы становится менее 0,5 В, и транзистор закрывается. Для более четкого срабатывания ключа он охвачен цепью положительной обратной связи через резистор R4 - то, что получилось из транзисторов Q1 и Q2, иногда называют триггером Шмитта. Он имеет некоторый гистерезис, и включение фонарика происходит при меньшей освещенности, чем его выключение.

Транзисторы Q2 и Q3 образуют повышающий инвертор и включены последовательно, один за другим, по схеме двухкаскадного усилителя. Усилитель охвачен цепью положительной обратной связи через емкостной делитель C1, С2 и поэтому превращается в релаксационный генератор импульсов. Нагрузкой транзистора Q3 служит катушка индуктивности L1, запасающая энергию во время открытого состояния транзисторов Q2 и Q3. Но это состояние не может продолжаться долго, поскольку ток через L1 нарастает, ее ферритовый сердечник входит в насыщение, индуктивность уменьшается, а напряжение на коллекторе Q3 повышается. Это повышение немедленно передается через конденсатор С2 на базу Q2 и запирает его. Вслед за ним запирается Q3, и импульс тока через транзисторы прекращается.

Но ток через катушку индуктивности L1 не может прекратиться мгновенно. Он продолжает идти и формирует на коллекторе Q3 положительный выброс напряжения, который может во много раз превосходить напряжение питания. Но у нас он просто открывает светодиод LED, и энергия, запасенная в катушке, превращается в световую. Пауза между импульсами продолжается до тех пор, пока не израсходуется энергия магнитного поля катушки и затем не разрядятся конденсаторы Cl, С2.

Дальнейшее поведение генератора зависит от состояния Q1. Когда он заперт днем, то смещения на базе Q2 нет, оба транзистора генератора закрыты и импульсы генерироваться не будут. Если же Q1 открыт ночью, то ток смещения поступает на базу Q2 через резистор R3, и генератор будет продолжать генерировать импульсы - светодиод загорится. Для отключения светодиода служит выключатель SW - если он разомкнут, то генерации импульсов нет, и светодиод не горит, поскольку напряжение аккумуляторного элемента меньше его напряжения зажигания.

Кстати говоря, если бы изготовители не экономили, а поставили два аккумуляторных элемента, а также 3-вольтовый белый светодиод, то он все равно бы не горел без генерации импульсов инвертором, поскольку номинальное напряжение батареи было бы 2x1,2=2,4 В. Зато в данной схеме он служил бы хоть каким-то предохранителем от перезаряда аккумуляторов, ограничивая напряжение на каждом элементе на уровне 1,5 В, то есть загораясь при этом напряжении даже на свету.

В заключение несколько практических советов для желающих повторить садовый светодиодный светильник и его схему. Для нее вполне подойдут отечественные транзисторы КТ315 и КТ361 с любыми буквенными индексами. Диод D1 может быть любым, с предельным током 40...60 мА. Марка датчика - фоторезистора неизвестна, но наверняка можно подобрать что-нибудь подходящее из имеющихся, измерив сопротивление на свету и в темноте с помощью тестера. Катушка L1 миниатюрная, по виду напоминающая резистор, индуктивность ее также неизвестна, но полагаю, что нескольких миллигенри будет достаточно. Можно намотать 100...150 витков на ферритовом колечке или использовать одну из обмоток малогабаритного трансформатора.

В схеме автоматического фонаря в качестве датчика применен фоторезистор, а в качестве источника энергии шести вольтовая солнечная батарея мощностью 5 Вт, от которой в течение светового дня заряжается свинцовый аккумулятор через диод D9, защищающий схему в случае если перепутать плюс и минус.

Если дневного света хватает, транзистор закрыт напряжением с выхода микросхемы LM555 ко входу которой подключен фотодатчик (фоторезистор LDR диаметром 10 мм). Подстроечным резистором P1 задают необходимую чувствительность к свету. Когда естественный световой поток снижается, транзистор открывается и загораются сверяркие белые светодиоды (D1…D8). При восстановлении требуемого уровня освещения схема переходит в исходное состояние и светодиоды тухнут.

Эту схему в следствие ее простоты я собрал на универсальной макетной плате и разместил в прозрачном корпусе из органического стекла. На крышке закрепил панельку солнечной батареи и фоторезистор. Учтите на фотодатчик LDR не должен попадать прямой солнечный поток.


В прошлой статье уже рассказывалось о том, как сделать солнечную панель из старых садовых светильников. Так как мощность солнечных элементов используемых в них не столь велика, то для создания панели средней мощности требуется достаточно большое количество элементов. После сборки солнечной панели, у автора осталось еще несколько садовых светильников, но для еще одной солнечной панели их недостаточно. Поэтому автор решил сделать зарядное устройство на основе солнечных элементов, используемых в садовых светильниках.

Материалы, которые использовал автор для создания зарядного устройства на солнечной энергии:
1) отрезок листа фанеры
2) садовые фонари 4 штуки
3) диод Шоттки
4) паяльник и необходимые расходники
5) аккумуляторные батарейки АА или ААА.

Рассмотрим основные этапы создания и сборки данного зарядного устройства.
Для начала автор рассчитал примерное количество солнечных элементов от светильников исходя из их мощности и мощности необходимой для питания аккумуляторных батарей. В итоге для создания зарядного устройство необходимо как минимум четыре садовых светильника.


После этого автор приступил к разборке садовых фонарей, чтобы достать из них солнечные элементы. Так же можно использовать имеющиеся держатели для аккумуляторов, а вот плата и светодиод в данной конструкции не пригодятся.

При желании можно аккуратно отделить солнечные элементы от крышки садового светильника, так как элементы покрыты специальной смолой, то они достаточно крепкие и при должном подходе останутся целыми. После чего поместить эти элементы в пластиковый корпус. Однако проводить подобную процедуру стоит только если вам необходим красивый внешний вид изделия, в ином случае допустимо использование элементов вместе с крышками. Автор не стал добавлять себе работы и просто прикрепил четыре солнечные элемента вместе с крышками на лист фанеры. После этого автор стал соединять элементы в одну конструкцию.

Ниже приведена схема подключения солнечной батареи, которая будет питать аккумуляторы:


Как видно из схемы, соединяются все элементы параллельно. Для того, чтобы аккумуляторы не разряжались через солнечные элементы при слабой освещенности, автор установил в разрыв между солнечными элементами и аккумуляторами диод Шоттки. Благодаря этому диоду зарядное устройство будет накапливать энергию на солнце, а в темное время суток успешно ее сохранять.


В итоге получилось такое зарядное устройство из 4 солнечных элементов от садовых светильников, которые питают аккумуляторные батареи.

Когда закончено строительство дачного домика, убран строительный мусор, самое время подумать о благоустройстве дачного участка. Определены места для беседки, для цветочных клумб, возможно, для бассейна. Намечены дорожки. И вот тогда возникает вопрос, а как освещать все это хозяйство. Можно, конечно, воспользоваться фонарным столбом и общей лампой уличного освещения. Но при этом вряд ли в темное время суток получится та неповторимая атмосфера таинственности и уюта, которую можно создать с помощью небольших разнообразных светильников, разбросанных в разных местах участка.

Установить такие светильники по всему участку не так уж и трудно. Но к ним нужно подвести электропитание. А как? Рыть траншеи и тянуть к ним кабель? Или, чего хуже, повесить на столбах провода? И устанавливать на каждом светильнике свой выключатель? Это нерационально. Проблему можно решить значительно проще. На участке устанавливаются светильники на солнечных батареях. Магазины предлагают огромный выбор таких светильников. От самых простых и дешевых, до самых сложных и дорогих, художественно выполненными, с программным управлением, с разноцветным свечением.

Но самые дешевые потому и дешевые, что качество их оставляет желать много лучшего, а через год-два службы их спокойно можно будет выбрасывать. А качественные светильники, которые удовлетворили бы любой взыскательный вкус, стоят дорого и не всегда по карману. Вот тогда на помощь приходит смекалка, и умельцы делают фонари на солнечных батареях сами, своими руками. Такой фонарь, сделанный, сделанный с любовью, на совесть, будет служить верой и правдой не один год. Сделать его абсолютно не сложно, как это может показаться поначалу. Могут возникнуть некоторые затруднения с выбором дизайна внешнего вида фонаря, но это уже будет зависеть только от художественного вкуса. Ну, и в какой-то степени, от того набора комплектующих деталей, из которых будет собрана электрическая часть фонаря.

Набор комплектующих элементов для фонаря на солнечной батарее

Прежде чем приступать к покупке деталей, нужно определиться, сколько светильников будет установлено и в каких местах. Какова будет их мощность. Определившись с этим, можно начать подбирать комплектующие элементы для светильников.

Естественно, для фонаря на солнечных батареях в первую очередь нужно приобрести солнечные модули. В продаже имеются гелиевые преобразователи различных модификаций, качества и эффективности. Если учесть, что основное назначение этих преобразователей состоит только в том, чтобы за световой день зарядить аккумулятор, то вполне достаточно приобрести в розницу некоторое количество солнечных модулей, из которых при необходимости можно собрать достаточно мощную батарею.

Для этих целей вполне подходит солнечная батарея на базе поликристаллического кремния 5.5 В, 90 мА, имеющая размеры 65х65х3 мм. Эта батарея ламинирована силиконом, благодаря чему батарея полностью защищена от всякого рода механических воздействий и от влаги. Это также позволило свести вес батареи до минимума – всего 15 грамм. Батарея идеально подходит для зарядки аккумуляторов 3.6 В – 4.8 В. Стоимость батареи в розницу 137 рублей.


Солнечные батареи Solar Panel 65x65

Следующий компонент светильника – аккумулятор. Для него вполне подойдет литий-ионный аккумулятор с выходным напряжением 3.6 В и емкостью не менее 3000 мАч.

Из имеющихся в продаже сравнительно недорогих аккумуляторов можно выбрать комплект, состоящий из четырех литий-ионных аккумуляторов модели 18650. Каждый аккумулятор имеет выходное напряжение 3.7 В при емкости 9800 мАч. В комплект поставки входит также зарядное устройство, которое может оказаться совсем нелишним, например, для первичной зарядки аккумуляторов. Аккумуляторы имеют такие размеры: диаметр –17 мм, высота – 65 мм. Цена комплекта (с зарядным устройством) – 411 рублей.


Комплект аккумуляторов модели 18650 с зарядным устройством

Далее нужно выбрать светящийся элемент. Наиболее подходящим для этих целей является светодиод. Можно, конечно, использовать и светодиодные лампы, но они будут расходовать слишком много энергии. Современные светодиоды с повышенной яркостью вполне могут удовлетворить любые потребности, поскольку для каждого конкретного светильника их можно устанавливать в нужном количестве.

Для таких фонарей вполне подойдет пятимиллиметровый сверхъяркий белый светодиод типа 3Н5 (helmet). Обычно он применяется в наружной рекламе, в различных электронных табло, в дорожных знаках. Так что для фонаря он подойдет вполне. Он может эксплуатироваться при температуре от -55°С до +50°С. Стоимость одного такого светодиода – 10 рублей.


Сверхяркий белый светодиод типа 3Н5 (helmet)

И, наконец, сердце светильника – электронный блок управления. В его схеме четыре резистора, стоимостью по 1.5 рубля каждый, два транзистора типа КТ503, стоимостью по 9 рублей каждый, один диод Шоттки 11DQ04, стоимостью 24 рубля. Это все размещается на одной плате.




Отдельно подключаются солнечная батарея, аккумулятор, светодиод. Можно, конечно, все это собрать на кусочке пенопласта, текстолита, картона. Но ни один уважающий себя мастер, собирающий что-либо для себя, не позволит себе такую неряшливость.

Для монтажа блока вовсе не обязательно рисовать и вытравливать печатную плату. Для этих целей замечательно подойдет универсальная макетная плата DIY PCB 42x25мм. Эта плата предназначена специально для монтажа и настройки собственных электронных схем. Она изготовлена из высококачественных материалов и имеет позолоченные контакты. Габариты такой платы 45х35х2 мм. Вес 2.8 грамма. Стоимость упаковки 235 рублей. В упаковке 4 такие платы.


Универсальная макетная плата DIY PCB 42х25мм

При изготовлении блока электроники для монтажа лучше всего использовать провод марки МГТФ 0,2. Это многожильный гибкий медный провод во фторопластовой изоляции. Работает в температурном диапазоне от -60°С до +220°С.


Рабочие напряжения – до 250 вольт переменного тока с частотой до 5 кГц или до 350 вольт постоянного тока. Моток такого провода в 190 метров стоит порядка 15 рублей.

Схема электронного блока управления фонаря на солнечных батареях

Принцип действия электронного блока предельно прост. Схема работает следующим образом. Пока солнечная батарея освещается солнцем, она вырабатывает ток, который через диод Шоттки осуществляет зарядку аккумулятора. Одновременно ток поступает на базу транзистора Т1 и открывает его.

Так как транзистор Т1 открыт, то на базе транзистора Т2 держится нулевой потенциал, и этот транзистор закрыт. Когда наступает темнота, солнечная батарея прекращает вырабатывать электричество, транзистор Т1 закрывается, на базу транзистора Т2 через резистор R2 поступает ток, открывающий его. Тем самым создается цепь питания светодиода. При этом диод Шоттки предотвращает разряд аккумулятора на солнечную батарею.


Принципиальная схема блока управления фонаря на солнечных батареях

Емкости и заряда аккумулятора достаточно для питания нескольких таких светодиодов, которые будут создавать нужный световой поток. Данная схема позволяет включить параллельно до трех-четырех светодиодов.

Что касается внешнего вида фонаря, то здесь все зависит от фантазии мастера и его вкуса. Форму можно придать любую, которая будет более всего гармонировать с окружающей средой. Это могут быть и просто фонарики для освещения дорожек, это могут быть гирлянды для деревьев, кустов, это могут быть декоративные светильники для беседок, для освещения фонтанов. Но все они будут служить долго и верно. Потому что сделаны они были своими руками.

Как извесно, прогресс не стоит на месте. Развитие новых технологий обусловило появление на рынке новых сверхъярких светодиодов, стоимость которых с каждым годом снижается. Появилось и много инновационных изделий на основе этого полупроводникового прибора. Все эти новшества возникают только благодаря одной цели - энергосбережению. Государством, внедряющим повсюду новые ""зеленые технологии"", является Китай (уже перещеголявший в плане инноваций и схемотехники Японию). Рынок просто заполонили светодиодные (и не только) девайсы из Поднебесной, цена которых довольно демократична, по сравнению с аналогичными изделиями европейских производителей. Одним из новаторских устройств,массово ввозимом в нашу страну, является садовый декоративный светодиодный фонарь с зарядкой на солнечной батарее.

Рассмотрим его подробнее. ""Вскрытие"" пациента показало вот что. Питается светильник от NI-MH (никель-металлгидридного) аккумулятора емкостью 600мА*ч напряжением 1,2В.

В качестве осветительного элемента применен обычный сверхяркий светодиод белого свечения; в роли зарядного устройства выступает солнечная панелька размером 5 на 5см, выдающая в погожий солнечный день до 2,3В напряжения. Осмотр печатной платы устройства практически ничего не прояснил - кроме токового дросселя и неизвесной микросхемы, с 4 выводами и надписью на корпусе 5252F на плате ничего нет! Поиск по базам даташитов и базам LED преобразователей (драйверов) тоже ничего не дал.

По всей видимости это очередная инновация китайских мастеров (копирование фирменной микросхемы с упрощением внутренней части).

Так как светильник с одним светодиодом светит довольно тускло (оно и понятно, ведь главная цель такого девайса - декоративная функция) была предпринята попытка модернизации. Во первых, колпак светильника из прозрачного пластика недостаточно рассеивает направленный поток света от диода, поэтому для усиления эффекта рассеивания была предпринята попытка оклеить внутреннюю часть крышки плафона фольгой.

Помимо этого можно посоветовать применить вместо одного светодиода три сверхярких, включенных в паралель, хотя это сократит время свечения светильника с 8 часов до 4-6. Можно пойти другим путем - заменить дроссель на более мощный и диод на матрицу из 4 диодов. Эта модернизация также сокращает время свечения прибора в темное время суток. Если же эксперименты привели к поломке электронной части изделия, то ремонт можно произвести только полностью заменив электронную начинку (ведь микросхемы с такой маркировкой не продаются ни в одном из российских радиомагазинов). Можно полностью заменить внутреннюю схему, применив разработку инженеров из Дании и построив транзисторный преобразователь.

Или обратиться еще к одному западному источнику.

Дроссель для этой схемы придется мотать на ферритовом кольце диаметром 10 и толщиной 3мм. Обмотка содержит две секции по 20 витков провода 0,2-0,3мм. Вообще же тема применения преобразователей для сверхъярких светодиодов довольно обширна и интересна с точки зрения экспериментов.

Что же касается нашего светильника, то он практически вечный (если конечно активно не вмешиваться в его работу). Неисправности, которые могут в нем возникнуть, носят специфику всех приборов, работающих на открытом воздухе - окисление контактов в аккумуляторном отсеке, непропай радиоэлементов и окисление дорожек под действием осаждающейся из воздуха влаги (можно покрыть плату дополнительным слоем цапонлака), выход из строя батареи. Батарею можно заменить на аналогичную Ni-Cd (никель-кадмиевую). Для профилактики батареи желательно хотябы раз в месяц заряжать ее от сетевого зарядного устройства, либо поставить переключатель, для отключения питания схемы светодиода, а аккумулятор зарядить полностью в течении 2-х световых дней (все таки у нас не Африка, бывают и пасмурные дни). Данный декоративный светильник исправно проработал в течении 2-х дачных сезонов (без замены батареи), и при всей своей простоте и неприхотливости является изделием, несущим в себе смысл главной в наше время технологической идеи - энергосбережения!

В заключении хочется напомнить о том, что скоро Новый Год и в продаже появились свежие инновационные разработки от китайских инженеров - светодиодные гирлянды с зарядкой от солнечной энергии. Очень надеюсь что в скором времени на наших страницах появится статья и о таких изделиях!

 


Читайте:



Туз кубков: подробное описание

Туз кубков: подробное описание

Туз Кубков – Младший Аркан В астрологическом плане Тузу Кубков соответствуют планеты Юпитер и Нептун в гармоничном аспекте к Солнцу, что...

Пошаговый рецепт приготовления пирога из лаваша

Пошаговый рецепт приготовления пирога из лаваша

Лаваш пришёл к нам из армянской кухни. В восточных семьях в пресные лепёшки заворачивают шаурму, рис или халву, подают вместе с блюдом люля-кебаб....

Иван Нагибин: "Сидеть на "лавке"?

Иван Нагибин:

«Я помню матчи в Премьер-лиге, все мною забитые голы, а они всегда трудные и запоминающиеся. Финал Кубка России Лига Европы, где играют лучшие...

Как привлечь взаимную любовь

Как привлечь взаимную любовь

Любовь проявляется во всех сферах жизни: одни дамы питают страсть к живописным пейзажам, другие находят утешение в лице новорождённого младенца,...

feed-image RSS