Главная - Освещение
Применение теоремы Гаусса для расчета электрических полей. Kvant. Теорема Гаусса Теорема гаусса для поля

Доказательство теоремы проведем в три этапа.

1. Начнем с вычисления потока электрического поля одного точечного заряда q (рис. ). В простейшем случае, когда поверхность интегрирования S является сферой, а заряд находится в её центре, справедливость теоремы Гаусса практически очевидна. На поверхности сферы напряженность электрического поля

E → = q r → ∕ r 3

постоянна по величине и всюду направлена по нормали к поверхности, так что поток электрического поля просто равен произведению E = q ∕ r 2 на площадь сферы S = 4 π r 2 . Следовательно, N = 4 π q . Этот результат не зависит от формы поверхности, окружающей заряд. Чтобы доказать это, выделим произвольную площадку поверхности достаточно малого размера с установленным на ней направлением внешней нормали n → . На рис. показан один такой сегмент преувеличенно большого (для наглядности) размера.

Поток вектора E → через эту площадку равен d N = E → ⋅ d S → = E cos θ d S ,

где θ — угол между направлением E → и внешней нормалью n → к площадке d S . Так как E = q ∕ r 2 , а d S cos θ ∕ r 2 по абсолютной величине есть элемент телесного угла d Ω = d S ∣ cos θ ∣ ∕ r 2 , под которым видна площадка d S из точки расположения заряда,

D N = ± q d Ω .

где знаки плюс и минус отвечают знаку cos θ , а именно: следует взять знак плюс, если вектор E → составляет острый угол с направлением внешней нормали n → , и знак минус в противном случае.

2. Теперь рассмотрим конечную поверхность S , охватывающую некоторый выделенный объём V . По отношению к этому объёму всегда можно определить, какое из двух противоположных направлений нормали к любому элементу поверхности S следует считать внешним. Внешняя нормаль направлена из объёма V наружу. Суммируя по сегментам, с точностью до знака имеем N = q Ω , где Ω — телесный угол, под которым видна поверхность S из точки, где находится заряд q . Если поверхность S замкнута, то Ω = 4 π при условии, что заряд q находится внутри S . В противном случае Ω = 0 . Чтобы пояснить последнее утверждение, можно вновь обратиться к рис. .

Очевидно, что потоки через сегменты замкнутой поверхности, опирающиеся на равные телесные углы, но обращенные в противоположные стороны, взаимно сокращаются. Очевидно также, что если заряд находится вне замкнутой поверхности, то любому сегменту, обращенному наружу, найдется соответствующий сегмент, обращенный внутрь.

3. Наконец, воспользовавшись принципом суперпозиции, приходим к итоговой формулировке теоремы Гаусса (). Действительно, поле системы зарядов равно сумме полей каждого заряда в отдельности, но в правую часть теоремы () дают ненулевой вклад только заряды, находящиеся внутри замкнутой поверхности. Этим завершается доказательство.

В макроскопических телах число носителей заряда столь велико, что дискретный ансамбль частиц удобно представить в виде непрерывного распределения, введя понятие плотности заряда. По определению, плотностью заряда ρ называется отношение Δ Q ∕ Δ V в пределе, когда объём Δ V стремится к физически бесконечно малой величине:

где интегрирование в правой части производится по объему V , замкнутому поверхностью S .

Теорема Гаусса даёт одно скалярное уравнение на три компоненты вектора E → , поэтому для расчета электрического поля одной этой теоремы недостаточно. Необходима известная симметрия распределения плотности зарядов, чтобы задача могла быть сведена к одному скалярному уравнению. Теорема Гаусса позволяет найти поле в тех случаях, когда поверхность интегрирования в () удается выбрать так, что напряженность электрического поля E постоянна на всей поверхности. Рассмотрим наиболее поучительные примеры.

▸ Задача 5.1

Найти поле шара, равномерно заряженного по объёму или поверхности.

Решение: Электрическое поле точечного заряда E → = q r → ∕ r 3 стремится к бесконечности при r → 0 . Этот факт показывает противоречивость представления элементарных частиц точечными зарядами. Если же заряд q равномерно распределен по объему шара конечного радиуса a , то электрическое поле не имеет особенностей.

Из симметрии задачи ясно, что электрическое поле E → всюду направлено радиально, а его напряженность E = E (r) зависит только от расстояния r до центра шара. Тогда поток электрического поля через сферу радиуса r просто равен 4 π r 2 E (рис. ).

С другой стороны, заряд внутри той же сферы равен полному заряду шара Q , если r ≥ a . Приравнивая 4 π r 2 E к умноженному на 4 π заряду шара q , получаем: E (r) = q ∕ r 2 .

Таким образом, во внешнем пространстве заряженный шар создает такое поле, как если бы весь заряд был сосредоточен в его центре. Этот результат справедлив при любом сферически симметричном распределении заряда.

Поле внутри шара равно E (r) = Q ∕ r 2 , где Q — заряд внутри серы радиуса r . Если заряд равномерно распределен по объему шара, то Q = q (r ∕ a) 3 . В этом случае

E (r) = q r ∕ a 3 = (4 π ∕ 3) ρ r ,

где ρ = q ∕ (4 π a 3 ∕ 3) — плотность заряда. Внутри шара поле линейно спадает от максимального значения на поверхности шара до нуля в его центре (рис. ).

Функция E (r) при этом всюду конечна и непрерывна.

Если заряд распределен по поверхности шара, то Q = 0 , а поэтому также E = 0 . Это результат также справедлив для случая, когда внутри сферической полости зарядов нет, а внешние заряды распределены сферически симметрично. ▸ Задача 5.2

Найти поле равномерно заряженной бесконечной нити; радиус нити a , заряд на единицу длины ϰ .

▸ Задача 5.3

Найти поле бесконечной прямой нити и бесконечно длинного равномерно заряженного цилиндра.

▸ Задача 5.4

Найти поле бесконечной заряженной плоскости и равномерно заряженного бесконечного плоского слоя.

Решение: Вследствие симметрии задачи поле направлено по нормали к слою и зависит только от расстояния x от плоскости симметрии пластины. Для вычисления поля с помощью теоремы Гаусса удобно выбрать поверхность интегрирования S в виде параллелипипеда, как показано на рис. .

Последний результат получается предельным переходом a → 0 при одновременном увеличении плотности заряда ρ так, чтобы величина σ = ρ a оставалась неизменной. По разные стороны от плоскости напряженность электрического поля одинакова по величине, но противоположна по направлению. Поэтому при переходе через заряженную плоскость поле скачком меняется на величину 4 π σ . Заметим, что пластина может считаться бесконечной, если расстояние от пренебрежимо мало по сравнению с её размерами. На расстояниях очень больших по сравнению с размерами пластины она действует, как точечный заряд, и её поле убывает обратно пропорционально квадрату расстояния.

Рассмотрим поле точечного заряда $q$, найдем поток вектора напряжённости ($\overrightarrow{E}$) через замкнутую поверхность $S$. Будем считать, что заряд находится внутри поверхности. Поток вектора напряженности через любую поверхность равен количеству линий вектора напряженности, которые выходят наружу (начинаются на заряде, если $q>0$) или количеству линий $\overrightarrow{E}$входящих внутрь, если $q \[Ф_E=\frac{q}{{\varepsilon }_0}\ \left(1\right),\]

где знак потока совпадает со знаком заряда.

Теорема Остроградского - Гаусса в интегральной форме

Допустим, что внутри поверхности S находится N точечных зарядов, величины $q_1,q_2,\dots q_N.$ Из принципа суперпозиции мы знаем, что результирующая напряженность поля всех N зарядов может быть найдена как сумма напряженностей полей, которые создаются каждым из зарядов, то есть:

Следовательно, для потока системы точечных зарядов можно записать:

Используем формулу (1), получаем, что:

\[Ф_E=\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\sum\limits^N_{i=1}{q_i\ }\left(4\right).\]

Уравнение (4) значит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, которые находятся внутри данной поверхности, деленой на электрическую постоянную. Это теорема Остроградского - Гаусса в интегральной форме. Данная теорема является следствием закона Кулона. Значение данной теоремы заключается в том, что она позволяет довольно просто вычислять электрические поля при различных распределениях зарядов.

Как следствие теоремы Остроградского - Гаусса надо сказать, что поток вектора напряженности ($Ф_E$) через замкнутую поверхность в случае при котором заряды находятся вне данной поверхности, равен нулю.

В том случае, когда можно не учитывать дискретность зарядов используют понятие объемной плотности заряда ($\rho $), если заряд распределен по объему. Она определена как:

\[\rho =\frac{dq}{dV}\left(5\right),\]

где $dq$ - заряд, который можно считать точечным, $dV$ -- малый объем. (Относительно $dV$ необходимо сделать следующее замечание. Данный объем мал настолько, чтобы плотность заряда в нем можно было считать постоянной, но достаточно велик, чтобы не начала проявляться дискретность заряда). Суммарный заряд, который находится в полости, можно найти как:

\[\sum\limits^N_{i=1}{q_i\ }=\int\limits_V{\rho dV}\left(6\right).\]

В таком случае формулу (4) перепишем в виде:

\[\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(7\right).\]

Теорема Остроградского - Гаусса в дифференциальной форме

Используя формулу Остроградского - Гаусса для любого поля векторной природы, с помощью которой осуществляется переход от интегрирования по замкнутой поверхности к интегрированию по объему:

\[\oint\limits_S{\overrightarrow{a}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{a}dV\ \left(8\right),\]

где $\overrightarrow{a}-$вектор поля (в нашем случае это $\overrightarrow{E}$), $div\overrightarrow{a}=\overrightarrow{\nabla }\overrightarrow{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ -- дивергенция вектора $\overrightarrow{a}$ в точке с координатами (x,y,z), которая отображает векторное поле на скалярное. $\overrightarrow{\nabla }=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}+\frac{\partial }{\partial z}\overrightarrow{k}$ - оператор набла. (В нашем случае будет $div\overrightarrow{E}=\overrightarrow{\nabla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) -- дивергенция вектора напряженности. Следуя вышесказанному, формулу (6) перепишем как:

\[\oint\limits_S{\overrightarrow{E}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{E}dV=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(9\right).\]

Равенства в уравнении (9) выполняются для любого объема, а это осуществимо только, если функции, которые находятся в подынтегральных выражениях, равны в каждой токе пространства, то есть мы можем записать, что:

Выражение (10) -- теорема Остроградского - Гаусса в дифференциальной форме. Трактовка ее такова: заряды являются источниками электрического поля. Если $div\overrightarrow{E}>0$, то в этих точках поля (заряды положительные) мы имеем источники поля, если $div\overrightarrow{E}

Задание: Заряд равномерно распределен по объему, в этом объеме выделена кубическая поверхность, со стороной b. Она вписана в сферу. Найдите отношение потоков вектора напряженности сквозь эти поверхности.

Согласно теореме Гаусса поток ($Ф_E$) вектора напряженности $\overrightarrow{E}$ через замкнутую поверхность при равномерном распределении заряда по объему равен:

\[Ф_E=\frac{1}{{\varepsilon }_0}Q=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV=\frac{\rho }{{\varepsilon }_0}\int\limits_V{dV}=\frac{\rho V}{{\varepsilon }_0}}\left(1.1\right).\]

Следовательно, нам необходимо определить объемы куба и шара, если шар описать вокруг этого куба. Для начала, объем куба ($V_k$) если сторона его b равен:

Найдем объем шара ($V_{sh}$) по формуле:

где $D$ -- диаметр шара и (так как шар описан вокруг куба), главная диагональ куба. Следовательно, нам необходимо выразить диагональ куба через его сторону. Это легко сделать, если использовать теорему Пифагора. Для вычисления диагонали куба, например, (1,5) нам сначала необходимо найти диагональ квадрата (нижнего основания куба) (1,6). Длина диагонали (1,6) равна:

В таком случает длина диагонали (1,5) равна:

\[{D=D}_{15}=\sqrt{b^2+{(\sqrt{b^2+b^2\ \ \ })}^2}=b\sqrt{3}\ \left(1.5\right).\]

Подставим в (1.3) найденный диаметр шара, получим:

Теперь мы можем найти потоки вектора напряженности через поверхность куба, она равна:

\[Ф_{Ek}=\frac{\rho V_k}{{\varepsilon }_0}=\frac{\rho b^3}{{\varepsilon }_0}\left(1.7\right),\]

через поверхность шара:

\[Ф_{Esh}=\frac{\rho V_{sh}}{{\varepsilon }_0}=\frac{\rho }{{\varepsilon }_0}\frac{\sqrt{3}}{2}\pi b^3\ \left(1.8\right).\]

Найдем отношение $\frac{Ф_{Esh}}{Ф_{Ek}}$:

\[\frac{Ф_{Esh}}{Ф_{Ek}}=\frac{\frac{с}{\varepsilon_0}\frac{\sqrt{3}}{2} \pi b^3}{\frac{сb^3}{\varepsilon_0}}=\frac{\pi}{2}\sqrt{3}\ \approx 2,7\left(1.9\right).\]

Ответ: Поток через поверхность шара в 2,7 раза больше.

Задание: Докажите, что заряд проводника располагается на его поверхности.

Используем для доказательства теорему Гаусса. Выделим в проводнике замкнутую поверхность произвольной формы около поверхности проводника (рис.2).

Допустим, что заряды внутри проводника есть, запишем с теорему Остроградского - Гаусса для дивергенции поля имеем для любой точки поверхности S:

где $\rho -плотность\ $внутреннего заряда. Однако поля внутри проводника нет, то есть $\overrightarrow{E}=0$, следовательно, $div\overrightarrow{E}=0\to \rho =0$. Теорема Остроградского - Гаусса в дифференциальной форме локальна, то есть, она записана для точки поля, мы специальным образом точку не выбирали, следовательно, плотность заряда равна нулю в любой точке поля внутри проводника.

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .

Закон взаимодействия электрических зарядов - закон Кулона - можно сформулировать иначе, в виде так называемой теоремы Гаусса. Теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Доказательство основывается на обратной пропорциональности силы взаимодействия двух точечных зарядов квадрату расстояния между ними. Поэтому теорема Гаусса применима к любому физическому полю, где действует закон обратных квадратов и принцип суперпозиции, например к гравитационному полю.

Рис. 9. Линии напряженности электрического поля точечного заряда, пересекающие замкнутую поверхность X

Для того чтобы сформулировать теорему Гаусса, вернемся к картине силовых линий электрического поля неподвижного точечного заряда. Силовые линии уединенного точечного заряда представляют собой симметрично расположенные радиальные прямые (рис. 7). Можно провести любое число таких линий. Обозначим полное их число через Тогда густота силовых линий на расстоянии от заряда, т. е. число линий, пересекающих единицу поверхности сферы радиуса равна Сравнивая это соотношение с выражением для напряженности поля точечного заряда (4), видим, что густота линий пропорциональна напряженности поля. Мы можем сделать эти величины численно равными, надлежащим образом выбрав полное число силовых линий N:

Таким образом, поверхность сферы любого радиуса, охватывающей точечный заряд пересекает одно и то же число силовых линий. Это значит, что силовые линии непрерывны: в промежутке между любыми двумя концентрическими сферами разных радиусов ни одна из линий не обрывается и не добавляется ни одной новой. Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает любую замкнутую поверхность (рис. 9), охватывающую заряд

Силовые линии имеют направление. В случае положительного заряда они выходят наружу из окружающей заряд замкнутой поверхности, как показано на рис. 9. В случае отрицательного заряда они входят внутрь поверхности. Если число выходящих линий считать положительным, а входящих - отрицательным, то в формуле (8) можно опустить знак модуля у заряда и записать ее в виде

Поток напряженности. Введем теперь понятие потока вектора напряженности поля через поверхность. Произвольное поле можно мысленно разбить на малые области, в которых напряженность меняется по модулю и направлению столь мало, что в пределах этой области поле можно считать однородным. В каждой такой области силовые линии представляют собой параллельные прямые и имеют постоянную густоту.

Рис. 10. К определению потока вектора напряженности поля через площадку

Рассмотрим, какое число силовых линий пронизывает малую площадку направление нормали к которой образует угол а с направлением линий напряженности (рис. 10). Пусть - проекция на плоскость, перпендикулярную силовым линиям. Так как число линий, пересекающих одинаково, а густота линий, согласно принятому условию, равна модулю напряженности поля Е, то

Величина а представляет собой проекцию вектора Е на направление нормали к площадке

Поэтому число силовых линий пересекающих площадку равно

Произведение носит название потока напряженности поля через поверхность Формула (10) показывает, что поток вектора Е через поверхность равен числу силовых линий, пересекающих эту поверхность. Отметим, что поток вектора напряженности, как и число проходящих через поверхность силовых линий, есть скаляр.

Рис. 11. Поток вектора напряженности Е через площадку

Зависимость потока от ориентации площадки относительно силовых линий иллюстрируется рис.

Поток напряженности поля через произвольную поверхность представляет собой сумму потоков через элементарные площадки, на которые можно разбить эту поверхность. В силу соотношений (9) и (10) можно утверждать, что поток напряженности поля точечного заряда через любую охватывающую заряд замкнутую поверхность 2 (см. рис. 9), как число выходящих из этой поверхности силовых линий равен При этом вектор нормали к элементарным площадкам замкнутой поверхности следует направлять наружу. Если заряд внутри поверхности отрицателен, то силовые линии входят внутрь этой поверхности и связанный с зарядом поток вектора напряженности поля также отрицателен.

Если внутри замкнутой поверхности находится несколько зарядов, то в соответствии с принципом суперпозиции будут складываться потоки напряженностей их полей. Полный поток будет равен где под следует понимать алгебраическую сумму всех зарядов, находящихся внутри поверхности.

Если внутри замкнутой поверхности электрических зарядов нет или их алгебраическая сумма равна нулю, то полный поток напряженности поля через эту поверхность равен нулю: сколько силовых линий входит в объем, ограниченный поверхностью, столько же и выходит наружу.

Теперь можно окончательно сформулировать теорему Гаусса: поток вектора напряженности электрического поля Е в вакууме через любую замкнутую поверхность пропорционален полному заряду находящемуся внутри этой поверхности. Математически теорема Гаусса выражается той же формулой (9), где под понимается алгебраическая сумма зарядов. В абсолютной электростатической

системе единиц СГСЭ коэффициент и теорема Гаусса записывается в виде

В СИ и поток напряженности через замкнутую поверхность выражается формулой

Теорема Гаусса широко используется в электростатике. В некоторых случаях с ее помощью легко рассчитываются поля, создаваемые симметрично расположенными зарядами.

Поля симметричных источников. Применим теорему Гаусса для расчета напряженности электрического поля равномерно заряженного по поверхности шара радиуса . Будем для определенности считать его заряд положительным. Распределение зарядов, создающих поле, обладает сферической симметрией. Поэтому такой же симметрией обладает и поле. Силовые линии такого поля направлены по радиусам, а модуль напряженности одинаков во всех точках, равноудаленных от центра шара.

Для того чтобы найти напряженность поля на расстоянии от центра шара, проведем мысленно концентрическую с шаром сферическую поверхность радиуса Поскольку во всех точках этой сферы напряженность поля направлена перпендикулярно ее поверхности и одинакова по модулю, то поток напряженности просто равен произведению напряженности поля на площадь поверхности сферы:

Но эту величину можно выразить и с помощью теоремы Гаусса. Если нас интересует поле вне шара, т. е. при то, например, в СИ и, сравнивая с (13), находим

В системе единиц СГСЭ, очевидно,

Таким образом, снаружи шара напряженность поля такая же, как у поля точечного заряда помещенного в центр шара. Если же интересоваться полем внутри шара, т. е. при то так как весь распределенный по поверхности шара заряд находится вне мысленно проведенной нами сферы. Поэтому поле внутри шара отсутствует:

Аналогично с помощью теоремы Гаусса можно рассчитать электростатическое поле, создаваемое бесконечной заряженной

плоскостью с плотностью постоянной во всех точках плоскости. По соображениям симметрии можно считать, что силовые линии перпендикулярны плоскости, направлены от нее в обе стороны и имеют всюду одинаковую густоту. Действительно, если бы густота силовых линий в разных точках была различной, то перемещение заряженной плоскости вдоль самой себя приводило бы к изменению поля в этих точках, что противоречит симметрии системы - такой сдвиг не должен изменять поле. Другими словами, поле бесконечной равномерно заряженной плоскости является однородным.

В качестве замкнутой поверхности для применения теоремы Гаусса выберем поверхность цилиндра, построенного следующим образом: образующая цилиндра параллельна силовым линиям, а основания имеют площади параллельны заряженной плоскости и лежат по разные стороны от нее (рис. 12). Поток напряженности поля через боковую поверхность равен нулю, поэтому полный поток через замкнутую поверхность равен сумме потоков через основания цилиндра:

Рис. 12. К вычислению напряженности поля равномерно заряженной плоскости

По теореме Гаусса этот же поток определяется зарядом той части плоскости, которая лежит внутри цилиндра, и в СИ равен Сравнивая эти выражения для потока, находим

В системе СГСЭ напряженность поля равномерно заряженной бесконечной плоскости дается формулой

Для равномерно заряженной пластины конечных размеров полученные выражения приближенно справедливы в области, находящейся достаточно далеко от краев пластины и не слишком далеко от ее поверхности. Вблизи краев пластины поле уже не будет однородным и его силовые линии искривляются. На очень больших по сравнению с размерами пластины расстояниях поле убывает с расстоянием так же, как поле точечного заряда.

В качестве других примеров полей, создаваемых симметрично распределенными источниками, можно привести поле равномерно заряженной по длине бесконечной прямолинейной нити, поле равномерно заряженного бесконечного кругового цилиндра, поле шара,

равномерно заряженного по объему, и т. п. Теорема Гаусса позволяет во всех этих случаях легко рассчитывать напряженность поля.

Теорема Гаусса дает связь между полем и его источниками, в некотором смысле обратную той, что дает закон Кулона, который позволяет определить электрическое поле по заданным зарядам. С помощью теоремы Гаусса можно определить суммарный заряд в любой области пространства, в которой известно распределение электрического поля.

В чем различие концепций дальнодействия и близкодействия при описании взаимодействия электрических зарядов? В какой мере эти концепции можно применить к гравитационному взаимодействию?

Что такое напряженность электрического поля? Что имеют в виду, когда ее называют силовой характеристикой электрического поля?

Каким образом по картине силовых линий можно судить о направлении и модуле напряженности поля в некоторой точке?

Могут ли силовые линии электрического поля пересекаться? Аргументируйте свой ответ.

Нарисуйте качественную картину силовых линий электростатического поля двух зарядов таких, что .

Поток напряженности электрического поля через замкнутую поверхность выражается разными формулами (11) и (12) в системах единиц ГСЭ и в СИ. Как это увязать с геометрическим смыслом потока, определяемого числом силовых линйй, пересекающих поверхность?

Как использовать теорему Гаусса для нахождения напряженности электрического поля при симметричном распределении создающих его зарядов?

Как применить формулы (14) и (15) к вычислению напряженности поля шара с отрицательным зарядом?

Теорема Гаусса и геометрия физического пространства. Посмотрим на доказательство теоремы Гаусса с несколько иной точки зрения. Вернемся к формуле (7), из которой был сделан вывод о том, что через любую окружающую заряд сферическую поверхность проходит одно и то же число силовых линий. Этот вывод связан с тем, что происходит сокращение в знаменателях обеих частей равенства.

В правой части возникло из-за того, что сила взаимодействия зарядов, описываемая законом Кулона, обратно пропорциональна квадрату расстояния между зарядами. В левой части появление связано с геометрией: площадь поверхности сферы пропорциональна квадрату ее радиуса.

Пропорциональность площади поверхности квадрату линейных размеров - это отличительная черта евклидовой геометрии в трехмерном пространстве. Действительно, пропорциональность площадей именно квадратам линейных размеров, а не какой-либо иной целой степени, характерно для пространства

трех измерений. То, что этот показатель степени равен точно двум, а не отличается от двойки пусть даже на ничтожно малую величину, свидетельствует о неискривленности этого трехмерного пространства, т. е. о том, что его геометрия именно евклидова.

Таким образом, теорема Гаусса - это проявление свойств физического пространства в фундаментальном законе взаимодействия электрических зарядов.

Идея о тесной связи фундаментальных законов физики со свойствами пространства высказывалась многими выдающимися умами еще задолго до установления самих этих законов. Так, И. Кант за три десятилетия до открытия закона Кулона писал о свойствах пространства: «Трехмерность происходит, по-видимому, оттого, что субстанции в существующем мире действуют одна на другую таким образом, что сила действия обратно пропорциональна квадрату расстояния».

Закон Кулона и теорема Гаусса фактически представляют один и тот же закон природы, выраженный в различных формах. Закон Кулона отражает концепцию дальнодействия, в то время как теорема Гаусса исходит из представления о силовом поле, заполняющем пространство, т. е. из концепции близкодействия. В электростатике источником силового поля является заряд, и связанная с источником характеристика поля - поток напряженности - не может измениться в пустом пространстве, где нет других зарядов. Поскольку поток можно наглядно представлять себе как совокупность силовых линий поля, то неизменность потока проявляется в непрерывности этих линий.

Теорема Гаусса, основанная на обратной пропорциональности взаимодействия квадрату расстояния и на принципе суперпозиции (аддитивности взаимодействия), применима к любому физическому полю, в котором действует закон обратных квадратов. В частности, она справедлива и для гравитационного поля. Ясно, что это не просто случайное совпадение, а отражение того, что и электрическое, и гравитационное взаимодействия разыгрываются в трехмерном евклидовом физическом пространстве.

На какой особенности закона взаимодействия электрических зарядов основана теорема Гаусса?

Докажите, основываясь на теореме Гаусса, что напряженность электрического поля точечного заряда обратно пропорциональна квадрату расстояния. Какие свойства симметрии пространства используются в этом доказательстве?

Каким образом геометрия физического пространства отражается в законе Кулона и теореме Гаусса? Какая особенность этих законов свидетельствует об евклидовом характере геометрии и трехмерности физического пространства?

Вычисление напряженности поля большой системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно существенно упростить, используя теорему Гаусса. Эта теорема определяет поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

Для произвольной замкнутой поверхности S поток вектора напряженности через эту поверхность определяется выражением

(1.23)

где проекция вектора на нормаль к площадке dS (рис. 1.10); вектор, модуль которого равен dS , а направление совпадает с направлением нормали к площадке ().

Рассмотрим сферическую поверхность радиуса r , охватывающую точечный заряд q , находящийся в ее центре (рис. 1.11). В соответствии с формулой (1.23) поток вектора напряженности сквозь эту поверхность будет равен:

Этот результат справедлив для замкнутой поверхности любой формы: если окружить рассматриваемую сферу произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Рассмотрим теперь общий случай произвольной замкнутой поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции напряженность поля, создаваемого всеми зарядами, равна векторной сумме напряженностей полей, обусловленных каждым зарядом в отдельности; поэтому поток вектора напряженности результирующего поля будет равен:

Согласно (1.24) каждый из интегралов, стоящий под знаком суммы, равен . Следовательно,

(1.25)

т.е. поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на электрическую постоянную.

Применим теорему Гаусса для определения напряженности поля равномерно заряженной бесконечной плоскости. В этом случае ее поверхностная плотность заряда

одинакова в любом месте плоскости. Это означает, что линии напряженности перпендикулярны плоскости в любой точке, т.е. поле заряженной плоскости однородно (рис. 1.12).

Мысленно выделим в пространстве цилиндр, ось которого перпендикулярна плоскости и одно из оснований проходит через интересующую нас точку. Согласно теореме Гаусса,

С другой стороны, так как линии напряженности пересекают только основания цилиндра, поток вектора можно выразить через напряженность электрического поля у обоих оснований цилиндра, т.е.

Приведем (без вывода) выражения для расчета напряженности электростатического поля, образованного некоторыми другими заряженными телами.

Принцип суперпозиции в сочетании с законом Кулона даёт ключ к вычислению электрического поля произвольной системы зарядов, но непосредственное суммирование полей по формуле (4.2) обычно требует сложных вычислений. Впрочем, при наличии той или иной симметрии системы зарядов вычисления существенно упрощаются, если ввести понятие потока электрического поля и использовать теорему Гаусса.

Представления о потоке электрического поля привнесены в электродинамику из гидродинамики. В гидродинамике поток жидкости через трубу, то есть объём жидкости N , проходящий через сечение трубы в единицу времени, равен v ⋅ S , где v — скорость жидкости, а S — площадь сечения трубы. Если скорость жидкости изменяется по сечению, нужно использовать интегральную формулу N = ∫ S v → ⋅ d S → . Действительно, выделим в поле скоростей малую площадку d S , перпендикулярную к вектору скорости (рис. ).

Рис. 1.4: Поток жидкости

Объём жидкости, протекающий через эту площадку за время d t , равен v d S d t . Если площадка наклонена к потоку, то соответствующий объём будет v d S cos θ d t , где θ — угол между вектором скорости v → и нормалью n → к площадке d S . Объём жидкости, протекающий через площадку d S в единицу времени получается делением этой величины на d t . Он равен v d S cos θ d t , т.е. скалярному произведению v → ⋅ d S → вектора скорости v → на вектор элемента площади d S → = n → d S . Единичный вектор n → нормали к площадке d S можно провести в двух прямо противоположных направлениях. одно из них условно принимается за положительное. В этом направлении и проводится нормаль n → . Та сторона площадки, из которой выходит нормаль n → , называется внешней, а та, в которую нормаль n → входит, — внутренней. Вектор элемента площади d S → направлен по внешней нормали n → к поверхности, а по величине равен площади элемента d S = ∣ d S → ∣ . При вычислении объёма протекающей жидкости через площадку S конечных размеров, её надо развить на бесконечно малые площадки d S , а затем вычислить интеграл ∫ S v → ⋅ d S → по всей поверхности S .

Выражения типа ∫ S v → ⋅ d S → встречаются во многих отраслях физики и математики. Они называются потоком вектора v → через поверхность S независимо от природы вектора v → . В электродинамике интеграл

N = ∫ S E → ⋅ d S → (5.1)
называют потоком напряженности электрического поля E → через произвольную поверхность S , хотя с этим понятием не связано никакое реальное течение.

Допустим, что вектор E → представляется геометрической суммой

E → = ∑ j E → j .

Умножив это равенство скалярно на d S → и проинтегрировав, получим

N = ∑ j N j .

где N j — поток вектора E → j через ту же самую поверхность. Таким образом, из принципа суперпозиции напряженности электрического поля следует, что потоки через одну и ту же поверхность складываются алгебраически.

Теорема Гаусса гласит, что поток вектора E → через произвольную замкнутую поверхность равен умноженному на 4 π суммарному заряду Q всех частиц, находящихся внутри этой поверхности:

 


Читайте:



Как привлечь взаимную любовь

Как привлечь взаимную любовь

Любовь проявляется во всех сферах жизни: одни дамы питают страсть к живописным пейзажам, другие находят утешение в лице новорождённого младенца,...

Оформление и начисление зарплаты пошагово для начинающих 1 с предприятие начисление заработной платы

Оформление и начисление зарплаты пошагово для начинающих 1 с предприятие начисление заработной платы

Чтобы вести бухгалтерский учет заработных плат, можно использовать программный продукт 1C. Но как выглядит автоматизация расчетов заработной платы...

Инфракласс Древнекрылые (Palaeoptera) Дальнейшая судьба личинок

Инфракласс Древнекрылые (Palaeoptera) Дальнейшая судьба личинок

Отряд Поденки (Ephemeroptera) Поденки наряду со стрекозами относятся к числу древнейших насекомых, ископаемые остатки которых известны из...

Морские течения: интересные факты Все теплые течения

Морские течения: интересные факты Все теплые течения

Мореплаватели о наличии океанических течений узнали практически сразу, как только начали бороздить воды Мирового океана. Правда, общественность...

feed-image RSS